Pisharody, S
1998
Fisher, J.; Pisharody, S.; Wignarajah, K.; Lighty, J.S.; Burton, B.; Edeen, M. and Davis, K.A.
28th International Conference on Environmental Systems, Danvers, Massachusetts, July 13-16, 1998
Over the last three years, the University of Utah (U of U), NASA Ames Research Center (ARC), and Reaction Engineering International (REI) have been developing an incineration system for the regeneration of components in waste materials for long-term life support systems. The system includes a fluidized bed combustor and a catalytic flue gas clean up system. An experimental version of the incinerator was built at the U of U. The incinerator was tested and modified at ARC and then operated during the Phase III human testing at NASA Johnson Space Center (JSC) during 1997. This paper presents the results of the work at the three locations: the design and testing at U of U, the testing and modification at ARC, and the integration and operation during the Phase III tests at JSC.
1997
Brouwer, J.; Kemp, G.; Heap, M.P.; Lighty, J.S.; Burton, B.; Sirdeshpande, A.; Inkley, D.; Pershing, D.W.; Fisher, J. and Pisharody, S.
Western States Section of the Combustion Institute, Spring 1997
For the last two years, the University of Utah and Reaction Engineering International, in cooperation with Ames Research Center, have been developing a waste incineration system for regenerative life support systems. The system is designed to burn inedible plant biomass and human waste. The exhaust gas is currently designed to recycle back to the plant growth chamber and will eventually be recycled to the human chamber after passing through a Trace Contaminant Control System. The incineration system, a fluidized bed reactor, has been designed for a 4-person mission. This paper will detail the design of the components of this system. In addition, results will be presented from testing at the University of Utah. Presently, the unit has been shipped to Ames Research Center for more tests prior to delivery to Johnson Space Center for testing in a 90-day, 4-person test.
Lighty, J.S.; Burton, B.; Sirdeshpande, A.; Inkley, D.; Pershing, D.W.; Brouwer, J.; Kemp, G.; Heap, M.P.; Fisher, J. and Pisharody, S.
27th International Conference on Environmental Systems, Lake Tahoe, Nevada, July 14-17, 1997
For the last two years, the University of Utah and Reaction Engineering International, in cooperation with NASA Ames Research Center (ARC), have been developing a waste incineration system for regenerative life support systems. The system is designed to burn inedible plant biomass and human waste. The goal is to obtain an exhaust gas clean enough to recycle to either the plant or human habitats. The incineration system, a fluidized bed reactor, has been designed for a 4-person mission. This paper will detail the design of the units. In addition, results will be presented from testing at the University of Utah. Presently, the unit has been shipped to Ames Research Center for more tests prior to delivery to Johnson Space Center for testing in a 90-day, 4-person test.