Bowerbank, CR
1997
Butala, S.; Medina, J.C.; Bowerbank, C.R.; Lee, M.L.; Felt, S.A.; Taylor, T.Q.; Andrus, D.B.; Bartholomew, C.H.; Yin, P. and Surdam, R.C.
Gas Research Institute, GRI-97/0213, July 1997. Funded in part by ACERC.
Coal seam reservoirs are important commercial sources of natural gas in the U.S. It is commonly assumed that coals function as self-sourced reservoirs for hydrocarbon gases formed by temperature-controlled thermolysis (cracking) of the bulk coal organic matter. However, this geologic process model may be an unreliable exploration guide. Artificial maturation results indicate that raw coal generates more hydrocarbon gas than demineralized coal. This difference suggests that mineral catalysis merits evaluation as a critical variable affecting hydrocarbon gas formation during coal maturation.
Kinetic modeling of temperature-controlled hydrocarbon thermolysis reactions using coal maturation geologic times and temperatures indicate that thermolysis reaction rates would be too slow to generate large, self-sourced coal seam natural gas deposits. By contrast, acid mineral, transition metal, and metal oxide mineral catalyzed reactions would occur at rates sufficiently fast under geologic time and temperature conditions to generate large quantities of natural gas. The unavailability of suitable benchmark coal reactivity data preclude assessment of whether catalytic reactions actually control hydrocarbon gas formation during coal maturation.