ADVANCED COMBUSTION ENGINEERING RESEARCH CENTER

HomeMembershipPersonnel • Research • StudentsLaboratories • Products • Publications • Annual Conference Library •

Best, PE

1993

User's Manual for 93-PCGC-2:Pulverized Coal Gasification and Combustion Model (2-Dimensional) with Generalized Coal Reactions Submodel FG-DVC

Brewster, B.S.; Boardman, R.D.; Huque, Z.; Berrondo, S.K.; Eaton, A.M.; Smoot, L.D.; Zhao, Y.; Solomon, P.R.; Hamblen, D.G.; Serio, M.A.; Charpenay, S.; Best, P.E. and Yu, Z.-Z.
US Department of Energy/Morgantown Energy Technology Center/Advanced Fuel Research/Brigham Young University Final Contract Report, Vol. II, 1993. Funded by US Department of Energy and Morgantown Energy Technology Center.

A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 93-PCGC-2, is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added. The heterogeneous reaction scheme allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate of mixing. A thermal and fuel NOx finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. A sorbent injection submodel with sulfur capture is included. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems.