

Deposition of Particulate from Coal-Derived Syngas on Turbine Blades with Film Cooling

Weiguo Ai, Spencer Harding, Nathan Murray, Thomas H. Fletcher

Brigham Young University Scott Lewis , Jeffrey P. Bons Ohio State University

> ACERC Conference February 26-27, 2007

- Background
- Objectives
- Experimental Methods
- Results and Discussion
- Future Work
- Conclusion
- Acknowledgments

- Alternate fuels (e.g. coal, petcoke, and biomass) are being considered to produce syngas fuels to replace natural gas in power turbines
- Despite gas cleanup, small levels of particulate (e.g. 0.1 ppmw) produce significant quantities (e.g. 2 tons) of ingested material in a large utility power plant during an 8000 hour operating year
- Negative effects of deposition on components and gas turbine performance
- Heavier reliance on innovative cooling strategies: internal cooling and film cooling

- Develop the capability to generate engine-like synfuel deposits in a laboratory setting with internal and film cooling
- Evaluate the influence of film holes shape, blowing ratio ,TBC and holes spacing on the formation of deposit from coal particulate

Experimental Method

Film Cooling Test Articles

Superalloy only

•3 holes, 1.5mm diameter, 3d spacing, cylindrical
•3 holes, 1.5mm diameter, 3d spacing, shaped

•TBC on superalloy

5 holes, 1mm diameter, 2.25d spacing, cylindrical
Block holes 2&4 to obtain 4.5d spacing

Turbine Accelerated Deposition Facility

Test coupon held inside exit cup

RGB Camera

Particle acceleration and thermal equilibrium tube.

Particulate injection

Natural gas combustor

Particle Feeder

•Design Parameters to match: temp, velocity, angle, materials, particle size, chemistry, and concentration.

•Inconel construction allows max jet temperature of @1200 C degree.

•Exit velocities up to 300m/s – deposition by inertial impaction.

•Match net particle throughput:

8000hrs x 0.1ppmw \approx 4hrs x 200ppmw

Redesign for Coolant Path

Temperature Measurement

Color image reconstruction from a Bayer filter (Bockaert, 2003)

Color Filter Array Sensor

Spectral Responsivity

$$P_{i} = \int_{t_{1}}^{t_{2}} s_{i} \int_{\lambda_{1}}^{\lambda_{2}} \varepsilon_{b} I_{b,\lambda} \beta_{\lambda} \tau_{\gamma} d\lambda dt$$

- Each color (RGB) has different spectral • response (S $_{\lambda}$) Intensity measured on each color BG (or RB) ratio used to determine
- temperature
 - assume surface emissivities are constant and equal

Particulate Sample Preparation

Results and Discussion

Flow Direction

a) M=0.6 b) M=1.0

c) M=1.5 d) M=2.0

Testing Conditions: Inconel alloy,3cylindrical holes, d=1.5 mm, 3d spacing, M=0.6, 1.0, 1.5, 2.0; 4 hr tests, Density ratio=1.8-2.3 **Deposit Pattern:** The flow channels seen downstream of the left and right side holes deviate somewhat from the expected stream-wise direction **Capture efficiency:** Blowing ratio increased from 0.6 to 2, the capture efficiency decreased by 50%.

Deposit Thickness Map

- T8000 contact profilometer was used for a statistical evaluation of the roughness of the deposits
- 15 mm by 15 mm square area at a data spacing of 20 um
- The ridges between film cooling holes are apparent at a blowing ratio of 2 but not apparent at M = 1

X/D

(4 hrs test, coal particulate, coupon with deposit residue, 3d spacing)

TADF deposits

Serviced turbine blade deposits

(4 hr test, coal particulate, shaped holes, 3d spacing, D.R. ≈2.2, 70ppmw)

- The area affected by theshaped hole coolant islarger than that of thecylindrical holes
- Cooling areas from individual hole almost overlap
- Shaped holes reduce the
 surface deposit more
 efficiently than cylindrical
 holes
 - Uniform temperature inthe entire lateral regiondownstream

(1 hr test, coal particulate, cylindrical holes, 2,4 holes plugged, 4.5d spacing, D.R. ≈2.2, 310 ppmw)

Deposit Pattern

M=2

M=0.5

M=0 (No impingement cooling)

ACERC 2008 Conference

M=4

Temperature Map at M=2.0

Bare metal coupon

TBC coupon ACERC 2008 Conference

Capture efficiency

Span-wise Distribution of Temperature Downstream

Deposit Surface Coverage

Effect of Hole Spacing

For bare metal coupon with cylindrical holes,

- deposits formed ridges between the cooling holes downstream of coolant injection
- coincided with the temperature map
- Capture efficiency decreased with the increase of blowing ratio for the sample with differing hole configuration
- Shaped holes have more span-wise coverage than the cylindrical holes and reduce amount of deposition

- Particulate capture efficiencies for the TBC coupon were higher than for the bare metal coupon
- Non-uniformity in surface temperature on TBC sample increased with blowing ratio
- Close hole spacing increased coolant coverage to reduce deposition in the coolant path

- Examine how deposition is affected by hole spacing and trench configuration
- Develop a simple deposition model coupled with a film cooling scheme to simulate experimental conditions
- Use CFD model to
 - quantify film cooling effectiveness and heat transfer coefficient
 - predict deposition at the varying conditions

Sponsored by DOE/SCIES
Arun Mehta from Pacificorp
Ken Forster and Kevin Cole

Thank You!!!