

ECHNOLOGY ACERC Annual Conference 2008 ENERGY Institute of 1

CFD Simulations of Biomass-Coal Cofiring at Commercial Scale

Søren K. Kær, Chungen Yin and Lasse Rosendahl Institute of Energy Technology Aalborg University

- Model background
- Measurement trends
- Comparison of gas temperatures and compositions

Biomass Firing in a Grate Based Boiler

- Technology overview
- Model background
- Comparison of gas phase temperatures and compositions
- Concluding Remarks

ACERC Annual Conference 2008

Geometry Outline

- Fuel and air flow rates and temperatures
- Fuel composition from ultimate and proximate analyses
 - Volatile gases: CH4, CO, H2, CO2 and H2O
 - Gas phase reaction mechanism based on Jones and Lindstedt
- Measured fuel size distributions approximated by Rosin Rammler

ECHNOLOGY

Simulated operating conditions •

- Full load pure coal firing
- 50% load pure coal firing
- Full load 20% cofiring (thermal)

The measurement locations

www.iat.auc

Institute of

Full Load vs 50% Load Coal Firing

ACERC Annual Conference 2008

1800 1700 1600 1500
1400 1300 1200 1100
1000 900 800 700 600 500

Full Load Pure Coal vs. Cofiring (20% thermal)

ACERC Annual Conference 2008

Temperature Profiles

Table 2 Comparison of heat fluxes calculated from steam data and CFD predictions

	Boiler data	CFD – coal firing	CFD – cofiring
Platen super heater	58 MW	57 MW	56 MW
Secondary super heater	27 MW	20 MW	19 MW

HNOLOG ACERC Annual Conference 2008

8

ACERC Annual Conference 2008

9

Gas Temperature

- Oxygen concentration patterns differ between pure coal and co-fired burners
 - Coal burners (top level) show trends similar to pure coal firing
 - Co-fired burners show high O2 concentrations in the near burner region due to IRZ deformation on slower fuel conversion

HNOLOGY ACERC Annual Conference 2008 ENERG Institute of

- The variation with load is well captured in terms of predicted CO2 concentrations
- The CO concentrations are surprisingly good agreement with measurements

ECHNOLOGY

11

ECHNOLOGY

ENERGY

Institute of

The Grate Boiler

Fuel Conversion Processes

ECHNOLOGY ACERC Annual Conference 2008 ENERGY Institute of

Bed Model: using experience-based conversion rate along the grate

ECHNOLOGY ACERC Annual Conference 2008 ENERGY Institute of

The Measuring Ports

Exit (100% load):

- T (wet): 165 °C
- NOx (dry): 110 ppm
- SO2 (dry): 34 ppm
- CO (dry): 150 ppm
- O2 (dry): 6.5 %vol
- Boiler η: 91.7%

www.iet.auc.dk

ECHNOLOGY ACERC Annual Conference 2008 ENERGY

Institute of

ECHNOLOG

ENERG

Institute of

ACERC Annual Conference 2008

Validation: CFD vs. Measurements

WWW01960006000

CHNOLOGY

ACERC Annual Conference 2008

Modeling Challenges

• Three kinds of common combustion disturbances in fuel beds

(1) Local burnouts (2) Wall-bounded channelling flow (3) Bed-level instabilities

• Discontinuous features (feeding, grate movement, ...)

TECHNOLOGY

Institute of ENERGY

ACERC Annual Conference 2008

Modeling Challenges cont'd

• Deposits formed on furnace walls & air nozzles

Uncertainties related to SA distribution

Concluding Remarks

- CFD is reaching a state where it becomes a reliable and very useful tool although is is still not predictive in all aspects
- Grate firing:
 - The fuel bed conversion is highly complex and requires substantial development to reach predictive modeling capabilities
 - If the main focus is free-board processes a simplified bed model can be used without substantial error
- Cofiring is suspension fired power plants:
 - Accurate description of biomass particle conversion (large, nonspherical particles) is needed
 - Further validation of near burner processes is needed
- It is important to remember
 - The computational grid along with the large number of standard modeling assumptions associated with CFD are still very important
 - The use of correct boundary conditions is critical