Comparisons of a Coal Ash Deposition Model with Measurements of a Tube in Cross Flow

Ryan Blanchard, Darron Cundick, Dale Tree, Larry Baxter 2/26/08

Objective

- Develop an CFD-based model of deposition
 - Fluid Flow
 - Temperature
 - Particle Tracking/Impaction/ Sticking
 - Thermal Boundary Condition
 - Quasi-unsteady
- Measure deposition and compare to model

Experimental Facility – Reactor

- 14 ft. Tall x 6 in. Diam. Droptube multi-fuel reactor
- Heated Walls
- Access Ports Spaced
 1 ft. Apart Axially
 - Residence Times
 - Measurement Access
- Solid, Gas, or Liquid Fuels
- Natural Gas Air Preheater

Experimental Facility – Probe

- Air-cooled Probe
- Surface-mounted Thermocouple
- Removable Deposition Collection Section
 - 10.1 cm long x 1.27 cm Diameter

CFD Simulation

- Solid Particle Combustion
- Particle Tracking
 - Impaction
 - Capture
- Thermal Boundary Conditions
 - Heat Flux
 - Emittance
- Quasi-Steady-State
- Coordination

Particle Trajectories Colored by Burnout Rate

Combustion – Chemistry

- Devolatilization
 CPD Model
- Char Burnout
 - Kinetics/Diffusion
 Limited
- Equilibrium
 - Preprocessed PDF Lookup Tables

Particle Size Distributions

- Shrinking Particle Model is Not Accurate
 - Fragmentation
 - Agglomeration
- Two Simulations
 - Combustion (Reactor)
 - Depositon (Probe)
 - In Series

Random Walk Particle Tracking

- 4th Order Runge-Kutta Trajectory Integration
- Stochastic Random Walk
 - Normally
 Distributed Velocity
 - Random Eddy Lifetime

Particle Deposition

- Mechanisms
 - Inertial Impaction
 - Large Particles
 - Eddy Impaction
 - Small Particles
 - Thermophoresis
 - Condensation
 - Chemical Reaction

 $\dot{m}_{deposit} = \dot{m}_{fuel} X_{ash} \frac{A_{probe}}{A_{reactor}} \eta G$ Impaction Efficiency = η Capture Efficiency = GCollection Efficiency = ηG

Particle Impaction

- Strong Function of Stokes Number
 - Particle Diameter
 - Flow Velocity
- Slight sensitivity to Reynolds Number, Turbulence

$$\eta = \frac{1}{\frac{b}{(Stk - a)} + \frac{c}{(Stk - a)^2} + \frac{d}{(Stk - a)^3}}$$

$$Stk = \frac{\rho_p d_p^2 V_g}{9\mu_g d_{Probe}}$$
$$Re = \frac{\rho_g V_g d_{Probe}}{\mu}$$

Particle Capture Efficiency

- Viscosity Model by Browning (2003)
- T_S is a function of ash composition
- Capture Model by Walsh (1990)
- Critical viscosity is not well known (1-10⁴ Pa·s)

$$\log\left(\frac{\mu}{T - T_s}\right) = \frac{14788}{T - T_s} - 10.391$$
$$G = \frac{m_{deposited}}{m_{particle}} = \min\left[\frac{\mu_{critical}}{\mu}, 1\right]$$

Ash Layer Accumulation

- Ash Particle's Mass is Deposited Into An Ash Layer Based on Local Surface Conditions
- Deposit Thickness and Thermal Resistance Accumulation

Ash Layer Properties + BC

- Surface Temperature
 - From Fluent (all Fluentinternal Heat Flux)
- Coolant Temperature
 - From User
- Effective Thermal Resistance
 - Sum of Individual Thermal Resistances
- 1-D Heat Flux Calculated from Temperatures and Effective Resistance
 - Back to Fluent as BC

$$q'' = \frac{T_{Surface} - T_{Cool}}{R_{S \text{ int } er} + R_{Particulate} + R_{Frozen} + R_{Slag}}$$

Coordination Algorithm

- Start With Converged, Clean-Wall Solution
- Outer Loop
 - Inject Particles
 - Accumulate Ash Layer
 - Inner Loop
 - Solve Flow + Energy Equations
 - Check For Freezing / Sintering of Sub Layers
 - Increment Time
- Minimally Invasive
 - Interpreted (Not Compiled) UDFs

Results

 Deposited Mass Measured

 Function of Time

 Critical Viscosity Parameter Tuned to

Match Single Case

Results

- Flow Temperature
 1250 K
- Probe Temperature
 1000 K
- Tuned Critical Viscosity
 - 350 Pa·s
- Deposition Rate Increases then Falls and Flattens

Deposited Mass vs. Exposure Time Flow Temp = 1250 K, Probe Temp = 1000K

Results

- Increased Flow Temp.
 - 1530 K
- Increased Probe Temp.
 - 1200 K
- Model Significantly Overpredicts Deposition Rate
- Higher Temperatures Cause Higher Flow Velocity
 - May Erode Particulate Ash Layer

Deposited Mass vs. Exposure Time Flow Temp = 1530 K, Probe Temp = 1200 K

Conclusions

- Model predicts 8x increase in deposition rate
 - 2nd case flow temperature higher than "critical" temperature
- Measured rate shows no increase

Conclusions

- Submodels successfully implemented and combined
- Model predicts increase in deposition rate with temperature when none is measured
- Particle Fragmentation/Agglomeration Model Needed
- Particulate Layer Removal Model Needed

Questions?

Predicted Deposit Thickness Around Circumference of Probe

