Soot Formation From Coal Tar Surrogates Under Gasification Conditions

> Randy C. Shurtz David Johnson Thomas H. Fletcher Mark S. Solum Ronald J. Pugmire

BYU Chemical Engineering Department U of U Chemistry Department

Presented at the 22nd Annual ACERC Conference BYU Conference Center February 26-27, 2008

Outline

- Why study soot in coal gasification?
- Overview of soot formation processes
- Review of coal tar characteristics
- Model compounds studied
- Overview of experiments
- New facilities for future work at high pressure
- Findings with model compounds

Why Study Soot in Coal Gasification?

- Soot in flame regions can radiate significant amount of heat away from flame
- Increased pressure increases soot formation
- Soot may be more difficult to gasify than coal char

Soot Formation Process

- Reactants & products during combustion of light hydrocarbons
- HACA mechanism used
 - H abstraction, C addition

Sarofim, Longwell, Wornat, Mukherjee,, *Springer Series in Chemical Physics*, **1994**, 59, 485-99.

Representative Coal Molecule

- Aromatic clusters
- Bridges
- Side Chains

Characteristics of Coal Tar

- Product of primary pyrolysis, precursor of soot in secondary pyrolysis
- Elemental composition:
 - 78-82% C, ~4% H, ~1.7% N, 5-16% O, some S
- MW: Average of ~350 amu
- Carbons per cluster: $C_{cl} = 11-17$ (i.e., 3-4 rings)
 - Slightly lower than parent coal (13-15)
 - Clusters with higher vapor pressures evaporate preferentially during pyrolysis
- Aromaticity: $f_{a'} = 63-76\%$
 - $f_{a^{,tar}} \ge f_{a^{,coal}}$

Freihaut, J. D., W. M. Proscia and D. J. Seery, Energy & Fuels 3, 692-703 (1989)

Perry, et al., Proc. Combust. Inst., 28, 2313-2319 (2000)

Characteristics of Coal Tar

- Cluster Molecular Weight (MW_{cl}):
 - ~240-290 amu
 - 38-44% below coal MW_{cl}
- Side-chain Molecular Weight (MW_{att}):
 - ~20-31 amu
 - Lower than parent coal value by 5-7 amu
 - Greater than char value
- Attachments per cluster/coordination # (σ + 1):
 - Typically ~4
 - ~2 bridges and ~2 side chains
 - Lower than parent coal and char (~4-6)

Perry, et al., Proc. Combust. Inst., 28, 2313-2319 (2000)

Watt, M. et al., 26th Symp. (Int.) on Comb., 3153-3160 (1996)

Suggested Average Tar Molecule

- MW = 235
- 3 aromatic rings
- C aromaticity = 0.76
- 2 side chains,
 2 bridges
- C content = 87%
- H content = 6.4%
- O content = 6.8%

Model Compounds Selected

2,6-dimethylnaphthalene

Experimental Methods and Conditions

Pyrolysis Conditions

Flat flame burner described by Fletcher in:

Solum, Sarofim, Pugmire, Fletcher, Zhang, Energy & Fuels, 2001, 15, 961-971.

Analytical Data

- Electron Spin Resonance data was obtained on a Bruker x-band spectrometer
- Solid-state ¹³C NMR data was obtained according to standard methods developed at the Utah NMR facilities as described in:

Solum, Sarofim, Pugmire, Fletcher, Zhang, Energy & Fuels, 2001, 15, 961-971.; Winans, Tomczyk, et. al., Energy & Fuels, 2007, 21, 2584-2593

GC/MS and High Resolution MS (HRMS) techniques including hydrogen deficiency analysis (on CH₂Cl₂ extracts) are given in:

Atmospheric Flat-Flame Burner (FFB)

- Advantages:
 - Char and soot formation at high heating rate (~10⁵ K/s)
 - Fueled by CH₄ or CO
 - Allows temperature flexibility (1100 K to 2000 K)
 - Adjust stoichiometry for %O₂ in postflame zone
 - Very fast heat-up and shut-down times for ease of use
 - Residence time adjusted easily
- Disadvantages:
 - Limited to experiments at ambient pressure

Pressurized Flat-Flame Burner (PFFB)

- Previous version retrofitted from a pressurized drop-tube reactor
 - Down-flow only
 - Movable burner and different quartz tubes to adjust residence time
 - Proven operation at 15 atm
- New Capabilities and Dimensions
 - Reduced pressure vessel ID to 6"
 - Combined heating/insulating units
 - Up-flow or down-flow
 - Probe moves to change residence time
 - 12-250 ms for 1 section
 - Up to 500 ms for 2 sections
 - Only 2 lengths of quartz tubing required
 - Simpler temperature profile measurement
 - Pressure vessel designed for 30 atm
 - Other required systems may limit operating pressure

Average Structural Information Derived from NMR Data

Solum, Sarofim, Pugmire, Fletcher, Zhang, Energy & Fuels, 2001, 15, 961-971.

Unpaired Electron Spin Concentrations

Sample	N _e x 10 ¹⁹ spins/g	This represents stabilized radical species
Biphenyl 1365 K	0.06	
Biphenyl 1410 K	0.2	• Indicative perhaps of cluster size
Biphenyl 1470 K	4.7	
Pyrene 1410 K	2.0	
Pyrene 1460 K	4.3	

Distribution of Ring Sizes Determined by HRMS from Biphenyl Experiments

Distribution of *ortho*-, *meta*-, and *para*-terphenyl Structures from Biphenyl GCMS Data

- These compounds are formed from polymerization, not the HACA mechanism
- Many other compounds identified through GCMS, HRMS, and NMR

Examples of combination of polymerization and C₂H₂ Addition (Biphenyl mechanism)

Relative Distributions of Polyphenyl Structures by HRMS From Biphenyl Experiments

Laser Desorption Mass Spectra of Pyrene Soots at 1410 and 1460 K

Winans, Tomczyk, et. al., Energy & Fuels, 2007, 21, 2584-2593

Schematic Structure of Pentamer of Pyrene Identified by LD-TOF

Corresponds to products of polymerization and dehyrogenation condensation products.

Polymerization creates molecular structures which are capable of undergoing dehydrogenative condensation to large graphite entities.

Current 13-C NMR Studies of 2,6-Dimethylnaphthalene

Structures Observed

C-13 NMR Results

Influence of Temperature

Conclusions

- Coal tar does not simply consist of fused aromatic rings
- Contains aliphatic groups and O
- Simple model compounds were selected and analyzed
- NMR data provided the first clear evidence that polycondensation and polymerization reactions occur in the early stages of aerosol formation
 - Different than the HACA mechanism
- Free radical reactions are evident from ESR data
- Several hundred compounds were identified by GC-MS & HRMS.
 - Structures ranging from biphenylene to C₄₂H₁₈ as well as the pentamer of pyrene
 - > All structures identified can be rationalized by a combination of
 - polymerization
 - acetylene addition (i.e., HACA)

Thank You

Atmospheric Flat-Flame Burner (FFB)

Examples of Possible Pathways from *m*-Terphenyl (Biphenyl mechanism)

10

Schematic Pathway to Formation of "Star Dust" from Biphenyl

 $C_{42}H_{18}$