NO_x-chemistry modeling for coal/biomass CFD

Jesper Møller Pedersen¹, Larry Baxter², Søren Knudsen Kær³, Peter Glarborg⁴, Søren Lovmand Hvid¹

¹DONG Energy, Denmark ²BYU, USA ³AAU, Denmark ⁴DTU, Denmark

Contents

- Background
- NO_x-model with HCN, NH₃ and NO
- H, OH and O radical modeling
- NO solution with radical modelling
- Conclusion

Background

- Straw used to replace some of the coal in the effort to lower CO₂-emissions.
- Co-fired in suspension fired boiler with pulverized coal at the Studstrup power plant, which has 2 units of 350 MW_e each. It burns 123,150 tons of straw a year (2005).
- Earlier measurement have shown a potential for NO_X-reduction during cofiring, which is not obtained at Studstrup.
- CFD can be used to generate large amounts of data.

Chemistry in CFD

Transport equation for the mass fraction of species i

Reaction rate limited

Contents

- Background
- NO_x-model with HCN, NH₃ and NO
- H, OH and O radical modeling
- NO solutions with radical modeling
- Conclusion

NO_X models

De Soete (1975)	Lars Storm Pedersen (1998)	Glarborg (2004)
2 reactions (4 with NH ₃ and HCN)	36 reactions	509 reactions
3 species solved for	3 species solved for	73 species solved for
O ₂ must be known	H, O, OH, H_2O , O_2 , H_2 , CO and CO_2 must be known	-

LSP NO_x-model

- NO_x-model by Lars Storm Pedersen
 - Based on 36 reactions
 - 3 active species NO, HCN and NH₃
 - 8 steady state species CN, HOCN, HNCO, NCO, NH₂, NH, N and N₂
 - Reaction rates for NO, HCN and NH₃ all become complex algebraic functions
 - R = f(NO, HCN, NH₃, H, O, OH, H₂O, O₂, H₂, CO, CO₂, N₂)

- Not easily obtainable
 Obtainable through the through the flowfield/combustion solution
- flowfield/combustion solution
- Can be estimated from the main species using steadystate and partial equilibrium assumption

Plug flow reactor simulations

- Major species
 - [H₂] = [CO] = 4 vol%
 - [H₂O] = [CO₂] = 6 [vol%]
- Minor species
 - [NH₃] = 200 ppm
 - [HCN] = 300 ppm
- Temperature 1800 K

[NO] at different residence times. With initial [NO] = 0 ppm.

[NO] at different residence times. With initial [NO] = 500 ppm.

Advantages/Disadvantages with the LSP model

- Advantages:
 - Reacts as fast as the complex model. De Soete reacts slower.
 - NO levels comparable to complex model. De Soete is off especially at fuel-rich conditions.
- Disadvantages:
 - Knowledge of H₂O, O₂, H₂, CO and CO₂ required. De Soete requires only O₂.
 - The LSP model requires knowledge of H-radicals.

Contents

- Background
- NO_x-model with HCN, NH₃ and NO
- H, OH and O radical modeling
- NO solutions with radical modeling
- Conclusion

H-radical models

- 8 reactions
- 3 major species O₂, H₂ and H₂O
- 3 radical species H, O and OH

 $\begin{array}{ll}1 & H + H + M = H_2 + M \\ 2 & H + OH + M = H_2O + M \\ 3 & H + O + M = OH + M \\ 4 & O + O + M = O_2 + M \\ 5 & OH + OH = H_2O + O \\ 6 & O + OH = H + O_2 \\ 7 & O + H_2 = OH + H \\ 8 & OH + H_2 = H_2O + H \end{array}$

- 4 solutions suggestions:
 - Partial: H, O and OH from partial equilibrium of reaction 1, 4 and 5
 - H-steady: H in steady state, O and OH from partial equilibrium of 4 and 5
 - H&O-steady: H and O in steady state, OH from partial equilibrium of 5
 - **H&O&OH-steady:** H, O and OH in steady state.

Solutions

Partial:

$$[H] = \sqrt{\frac{C}{K_1} \cdot [H_2]} \qquad [O] = \sqrt{\frac{C}{K_5} \cdot [O_2]} \qquad [OH] = \sqrt{\frac{1}{K_6} \cdot [H_2O] \cdot \sqrt{\frac{C}{K_5} \cdot [O_2]}}$$

H-Steady:

$$[H] = \frac{-b + \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

where a, b and c are functions of O, OH, O_2 , H_2 , and H_2O . O and OH are found as in Partial

- H&O-Steady:
 - Solved numerically. Two nonlinear equations with two unknowns.
- H&O&OH-Steady:
 - Solved numerically. Three nonlinear equations with three unknowns.

[H] at different residence times

Contents

- Background
- NO_x-model with HCN, NH₃ and NO
- H, OH and O radical modeling
- NO solutions with radical modeling
- Conclusion

[NO] at different residence times. With initial [NO] = 0 ppm.

[NO] at different residence times. With initial [NO] = 500 ppm.

Nitrogen species after 5 msec as a function of O_2 . [NO] = 0 ppm

Nitrogen species after 5 msec as a function of O_2 . [NO] = 500 ppm

[NO] and [H] at different residence times

Conclusion

- The H, O and OH steady state model mimic the Glarborg model best.
- The NO_X-model has the potential to give results similar to those of Glarborg.
- NO_X-model with radical models
 - Over predicts speed
 - Over predicts NO creation/destruction under very fuel rich conditions
- The partial equilibrium model does best with the NO_X-model.
- The models do better than De Soete.

