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Background

= Straw used to replace some of the coal in the effort to lower CO,-emissions.

= Co-fired in suspension fired boiler with pulverized coal at the Studstrup
power plant, which has 2 units of 350 MW, each. It burns 123,150 tons of
straw a year (2005).

= Earlier measurement have shown a potential for NOy-reduction during co-
firing, which is not obtained at Studstrup.

» CFD can be used to generate large amounts of data.
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Chemistry in CFD

Transport equation for the mass fraction of species i

: ;
— (oY) + V(p¥¥;) = V], @ +5;

— —
Transient Diffusion

Convective Source

Net source of i due to chemical reaction

= Mixing limited
= Reaction rate limited
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NO, models

De Soete Lars Storm Pedersen Glarborg
(1975) (1998) (2004)

2 reactions (4 with NH,
and HCN)

3 species solved for
O, must be known

36 reactions 509 reactions

3 species solved for 73 species solved for

H, O, OH, H,0, O,, H,, CO -
and CO, must be known

DONG

6 energy



LSP NO,-model

= NO,-model by Lars Storm Pedersen

= Based on 36 reactions
= 3 active species NO, HCN and NH,
= 8 steady state species CN, HOCN, HNCO, NCO, NH,, NH, N and N,,
= Reaction rates for NO, HCN and NH; all become complex algebraic functions
= R =f(NO, HCN, NHj, H, O, OH, H,0, O,, H,, CO, CO,, N,)
\ J | }
| |

* Not easily obtainable * Obtainable through the
through the flowfield/combustion solution

flowfield/combustion solution

e Can be estimated from the
main species using steady-
state and partial equilibrium
assumption
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Plug flow reactor simulations

= Major species

= [H,] = [CO] = 4 vol%

= [H,0] = [CO,] = 6 [vol%]
= Minor species

= [NH;] = 200 ppm

= [HCN] = 300 ppm
= Temperature 1800 K
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Concentration / [ppm]

INQO] at different residence times. With initial [NO] =0 ppm.

NO concentration at fuel lean conditions ¢ = 0.5
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Concentration / [ppm]

INQO] at different residence times. With initial [NO] = 500 ppm.

NO concentration at fuel lean conditions ¢ = 0.5
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Advantages/Disadvantages with the LSP model

= Advantages:

» Reacts as fast as the complex model. De Soete reacts slower.

= NO levels comparable to complex model. De Soete is off especially at fuel-rich conditions.
» Disadvantages:

= Knowledge of H,0, O,, H,, CO and CO, required. De Soete requires only O,

= The LSP model requires knowledge of H-radicals.
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= 8 reactions

= 3 major species O,,
H, and H,O

= 3 radical species H,
O and OH

H-radical models

H+H+M=H,+ M
H+OH+M=H,0+M
H+0+M=0H+M
0+0+M=0,+M
OH + OH = H,0 + 0
0+ OH =H + 0,
O+H,=0H+H

OH 4+ H, = H,0 + H

CO~1 Oy U1 o LN =

= 4 solutions suggestions:

= Partial:

= H-steady:

= H&O-steady:

» H&O&OH-steady:

H, O and OH from partial equilibrium of reaction 1, 4 and 5
H in steady state, O and OH from partial equilibrium of 4 and 5
H and O in steady state, OH from partial equilibrium of 5

H, O and OH in steady state.
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Solutions

= Partial:
’C ’C 1 C
[H] = E'[Hz] 0] = E'[Qz] [0H] = E'[HEQ]' E'[Qz]
= H-Steady:
(] —b+Vb? —4-a-c where a, b and c are functions of O, OH, O,, H,, and

2-a H,O. O and OH are found as in Partial

» H&O-Steady:
= Solved numerically. Two nonlinear equations with two unknowns.

» H&O&OH-Steady:

= Solved numerically. Three nonlinear equations with three unknowns.
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[H] at different residence times

H concentration at fuel lean conditions ¢ = 0.5
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INQO] at different residence times. With initial [NO] =0 ppm.

NO concentration at fuel lean conditions ¢ = 0.5
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Concentration / [ppm]

INQO] at different residence times. With initial [NO] = 500 ppm.

NO concentration at fuel lean conditions ¢ = 0.5
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Nitrogen species after 5 msec as a function of O,. [NO] =0 ppm
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MO concentration / [ppm]

Nitrogen species after 5 msec as a function of O,. [NO] = 500 ppm
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[INO] and [H] at different residence times
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Conclusion

* The H, O and OH steady state model mimic the Glarborg model best.
= The NOy-model has the potential to give results similar to those of Glarborg.

= NO,-model with radical models

= Qver predicts speed

= Over predicts NO creation/destruction under very fuel rich conditions

= The partial equilibrium model does best with the NO,-model.

= The models do better than De Soete.
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