Kinetics of Green River Oil Shale

James Hillier, BYU

What is Oil Shale?

- Organic carbon known as Kerogen bound to an inorganic mineral matrix
- It can be precursor to oil given enough heat and time
- It is considered a non-conventional oil resource

Oil Shale

Siskin Model

Figure 1. Siskin's model of organic material in Green River Oil Sale.⁶

Where is it located?

How much is there?

- Conservative estimates are 2.9 trillion barrels world wide which is twice the proven reserves of conventional oil
- In the United States there are estimates of 2 trillion barrels of which some fraction is recoverable
- The Energy Information Administration reports that the United States uses approximately 7.6 billion barrels per year

Past Work

- A few decades ago there was moderate interest in characterizing and exploiting the oil shale resource
- The methodology of recovering the resource was to mine it and retort it on the surface which was environmentally harmful
- Consequently almost all characterization of the resource was done at atmospheric retorting conditions

Current Work

- Some of the recent approaches (as reported publicly) are to recover the resource in an *in-situ* process
- The conditions for *in-situ* differ somewhat than the previous atmospheric methods
- Pressure is one notable difference

Our Work

- We use non-isothermal TGA methods to determine kinetic parameters at various pressures and heating rates
- We can then determine the effect of pressure and heating rate on the kinetic parameters
- We also perform the same TGA work on oil shale and extracted kerogen to determine the effect of the mineral matrix

Experimental Matrix

Pressure (bar)	Heating rate (°C/min)		
	4		60
1	Low Heating Rate Low Pressure		High Heating Rate Low Pressure
40	Low Heating Rate High Pressure		High Heating Rate High Pressure

Carrier gas: He (1.4 slpm), ≈30 mg sample

Overview of Results

GR 1 Bar 3.3 C/min vs 56.7 C/min

GR 40 Bar 3.3 C/min vs 56.7 C/min

GR 1 Bar vs 40 Bar 3.3 C/min

GR 1 Bar vs 40 Bar 56.7 C/min

GR 1 Bar 3.3 C/min vs 40 Bar 56.7 C/min

M5831 Bar 3.3 C/min vs 56.7 C/min

Activation Energy

- Assumed parallel global first order reactions
- Uses Arrhenius equation with the activation energy and pre-exponential factor as adjustable parameters

$$\frac{dm_i}{dt} = k \cdot m_i^n$$

Activation Energy Result

Our Results for Kerogen

	1 bar 3.3 K/min	1 bar 56.7 K/min	40 bar 56.7 K/min
m ₁	0.74	0.84	0.74
A ₁ (1/s)	3.91 × 10 ⁸	7.27 × 10 ⁹	3.70 × 10 ¹⁰
E ₁ (kJ/mol)	168	157	174
m ₂	0.26	0.16	0.26
A ₂ (1/s)	0.07	1.11	574
E ₂ (kJ/mol)	35.3	24.0	45.3

