Modeling Combustion In Pyrolysis Furnaces With Next Generation Low NOx Burners

Brad Adams, Qing Tang, Jinliang Ma
Reaction Engineering International

ACERC Conference
Provo, UT
February 26-27, 2008
Acknowledgements

• Dr. David Brown, Shaw Energy & Chemicals (formerly Stone & Webster)

• John Zink Company, LLC

• PTTCH
 – PTT Chemical PLC, Map Ta Phut, Thailand

• National Science Foundation (NSF)
 – SBIR Phase II (DMI-0216590)
 – Program Manager: Dr. Errol B. Arkilic
Ethylene Cracking Furnaces

• Ethylene is major building block in petrochemicals (75 million metric tons per year)

• Key furnace performance issues:
 – Availability
 – Efficiency
 – Emissions (NOx, CO)

• Furnace performance depends on burner performance
 – Burners becoming more complex
 – Often a trade-off between low emissions and flame ‘quality’

• CFD can help evaluate new burner technologies
Key Furnace Combustion Elements

• **Burners**
 – Staged diffusion flames and/or lean premixed flames
 – Multiple fuels and firing rates (turn down)
 – Low NOx emissions (30-60 ppm)
 – Flame profile and emissions are key

• **Process coils**
 – High radiant efficiency (~45%)
 – Heat flux profile and heating uniformity

• **Refractory**
 – Limited heat loss (~2-4%)
 – Variable temperature & emissivity
Cracking Furnace Modeling Challenges

- **Scales!**
 - Geometric resolution
 - Jet velocities
 - Chemistry vs turbulent mixing

- **Input accuracy (GIGO)**

- **Trade-off between accuracy and turn-around time**
 - Grid refinement
 - Chemistry accuracy
 - Convergence
Furnace Model Requirements

• **Grid resolution** (for detailed burner geometry, fuel jets, multiple fuel mixing zones, process tube heat transfer)

• **Sub-models for:**
 – Fuel-lean, premixed, turbulent combustion
 – Turbulence-chemistry interactions
 – Finite-rate kinetics for ppm-level NOx, CO
 – Variable surface properties
 – Gas-wall-tube heat transfer
 – Fire-side - process-fluid thermal coupling

• **Computationally efficiency** (for optimal run-time and memory usage)
REI Software Evolution

1991
- Zone-type model with radiative heat exchange

1992
- BANFF models with 200,000 computational cells (flame quality, radiation, no NOx)

1995
- BANFF models with 500,000 computational cells (flame quality, radiation, some NOx)

2001
- Fluent-BANFF and BANFF-BANFF hybrid models with 1M + 800,000 cells (flame quality)

2004
- ADAPT code with 1M+ computational cells

2007
- Refined ADAPT code (chemistry, mixing models, turbulence-chemistry models, efficiency)

2008+
- “More-refined” ADAPT code
Laboratory-Scale Gas Burner

2004 Calculations

Sandia Piloted-Jet Methane Flame (http://www.ca.sandia.gov/TNF)
LPMF* Hearth Burner

- Lean Premix
- Fuel Staging
- Quasi-Flameless

Lean PreMix Flat Flame (LPMF)

Reaction Engineering International
Test Furnace with LPMF Burner

- Heat Release ~ 6.5 mmBtu/h (as shown)
- Firebox Temp ~ 2,250°F
- NOₓ~ 0.02 lb/mmBtu (~17 ppmvd)
Lean Premixed Burner

Lower Port

Firing wall

Cooling wall

Port B

Exp.
EDC_9_species
PDF_9_species
EDC_19_species
PDF_19_species

Port B

Exp.
EDC_9_species
PDF_9_species
EDC_19_species
PDF_19_species

Port B

Exp.
EDC_9_species
PDF_9_species
EDC_19_species
PDF_19_species

Port B

Exp.
EDC_9_species
PDF_9_species
EDC_19_species
PDF_19_species
Lean Premixed Burner

Upper Port

![Graphs showing temperature and emissions profiles for Port G with various species models and experimental data.](image-url)
PTTCH Application
(Next Generation System)

- JZ Solar Technology™
- Combustion System
 - CFD crucial
 - Not just burner technology
- First Application Outside US Gulf Coast
- 0.035 lb/mmBtu guaranteed
 - HHV basis
 - Corresponds to 32 ppmvd
PTTCH Furnace Model

- LPMW-SF
- LPMW
- RFS nozzles
- LPMF floor burners

Reaction Engineering International
Purpose of CFD at PTTCH

- To determine optimal furnace performance
 - For different burner layouts
 - For different burner configurations
- Based on predictions of
 - Flame shape
 - from velocity, CO concentrations and gas temperatures
 - Furnace CO and NO\textsubscript{x} emissions
 - Furnace exit temperature
 - Heat transfer to process coils
 - Heat flux profiles to process coils
Study 1: Burner Layout

Initial design had poor heat release patterns

Revised design improved heat release patterns

Velocity

70 ft/s

Gas Temp.

3000 °F

500 °F
Study 2: Process Coil Heating Uniformity

Height From Furnace Floor (ft)

Incident Heat Flux (Btu/hr-ft²)

Average
Coils 1-5
Coils 6-10
Coils 11-15
Coils 16-20

5568 Btu/hr-ft²
Study 2: Improve Heating Uniformity

Improve uniformity by optimizing burner configuration (fuel distribution)

Case 2: 5568 Btu/hr-ft²
Case 3: 3114 Btu/hr-ft²
Case 4: 2748 Btu/hr-ft²
Model-Furnace Data Comparison

NOx Emissions
- CFD predicts 21 ppm @ 3% O₂
- Tests measured 17-21 ppm @ 3%
- CO <1 ppm in both cases

Furnace passed warranty and regulatory testing
Why Use CFD Modeling?

- **CFD is a vital design tool**
 - Improves understanding
 - Compared to testing
 - Better for flux profile
 - Better for ‘flame quality’
 - Almost the same for NO_x
 - Cheaper
 - More data
 - Validates designs
 - Avoids operational problems
Conclusions
(industry perspective)

• New ADAPT CFD software is a powerful tool for modeling next generation low NOx firing systems
 – Not a sledgehammer
 – Requires capable modeling engineers

• Successful application requires full collaboration and commitment from
 – CFD specialist
 – Licensor/ furnace designer
 – Burner manufacturer
 – Producer/End User

• Still challenges ahead
 – Validity of results limited by
 • Computational power
 • Budget and schedule constraints
Thank You

adams@reaction-eng.com