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Background
• Oxy-fuel is a promising technology for CO2

sequestration

• Pilot scale tests show an unexpected reduction in NOx
emissions

• Early research suggests that reduction of recycled NOx
is the dominant mechanism (Okazaki and Ando, 1997) 
but…

• …the mechanisms behind this reduction are not yet 
understood (Sarofim, 2007).
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Objective
• Determine the cause(s) of NOx reduction in 

oxy-fuel combustion and thereby understand 
how NOx reduction might be maximized
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Hypotheses
• Near-elimination of thermal- and prompt-NOx

• More attached flame
• Elevated NO concentrations
• Reduction of recycled NOx in the fuel-rich zone
• Temperature increases
• Increased residence time in fuel-rich regions
• Equilibrium considerations
• Reduced NO formation from char
• Enhanced heterogeneous reburning
• Increased importance of gasification reactions 
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Experimental Method
For results shown:
• Coal and O2 flow is 

constant
• Diluent is changed 

(N2 or CO2)
• Oxy-fuel mixtures:

• 25% O2 by mass
• 30% O2 by mass
• (32 and 37 vol.% 

respectively)
• 29% of oxidizer to 

burnout stage
• SR1 = 0.76
• SR2 = 1.05
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Computational Model
Series network of 
CSTR’s  ≈ Plug flow 
reactor (1-D)

Homogeneous NOx
mechanisms:
• Thermal
• Prompt
• Fuel
• Advanced

reburning

Software: Cantera 
with MATLAB
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Measured NOX Concentration
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Nitrogen Conversion
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Equilibrium NOx
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Modeling: NOx Formation in Air
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Volatiles-N Release
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Predicted Volatile-N Release
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Predicted Nitrogen Conversion
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Fuel Rich NO Predictions
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CO Near Burner
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Equilibrium CO
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• Oxy-fuel can produce lower NO levels without recycling
•NO destruction rates appear faster in oxy-fuel

• Modeling traditional NO mechanisms predicted known trends:
•Suppression of NO formation by recycled NO
•Destruction of almost all recycled NO
•BUT… did not predict the results seen here

• High CO levels exist in the reducing zone of oxy-fuel flames
•Thermal dissociation of CO2 is only a partial explanation
•Gasification of char by CO2 is another possible source (suggested by 

wall temperature data)
• A possible mechanism for enhanced NO reduction in oxy-fuel is 

NO reaction with CO on the char surface
•Char components can act as catalysts (e.g. Ca)
•Probably coal-type dependent
•Char reactions were not modeled

Conclusions



Future Work

Recent Improvements:
• Simpler coal feed system
• Additional sampling ports
• Secondary air preheating
• Air-cooled probe
• New stoichiometry:

• SR1 = 0.75 (unchanged)
• SR2 = 1.2 (previously 1.05)



Future Work
Future Experiments:
• Stage 1: High spatial resolution NO, O2, CO data with 3 

coals
• identify peak NO levels and size of reducing zones, study coal-type 

dependence, close N balance with fly ash samples

• Stage 2: Dope reactants with NO
• determine effects of NO recycling

• Stage 3: Measure HCN, NH3, CO2, SO2, SO3, and other 
species by FTIR

• Stage 4: Collect simulated superheater ash deposits
• look for indicators of altered corrosion tendencies in oxy-fuel 

combustion
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Questions?
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