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Background

* Oxy-fuel Is a promising technology for CO,
sequestration

* Pilot scale tests show an unexpected reduction in NO,
emissions

* Early research suggests that reduction of recycled NO,
IS the dominant mechanism (Okazaki and Ando, 1997)
but...

* ...the mechanisms behind this reduction are not yet
understood (Sarofim, 2007).



Objective

* Determine the cause(s) of NO, reduction in
oxy-fuel combustion and thereby understand
how NO, reduction might be maximized



Hypotheses

* Near-elimination of thermal- and prompt-NO,

* More attached flame

* Elevated NO concentrations

* Reduction of recycled NO, in the fuel-rich zone
* Temperature increases

* Increased residence time in fuel-rich regions

* Equilibrium considerations

* Reduced NO formation from char

* Enhanced heterogeneous reburning

* Increased importance of gasification reactions



Experimental Method
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Computational Model
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NO Sampling Issues
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NO Sampling Issues
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Measured NO, Concentration
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Nitrogen Conversion
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Equilibrium NO,
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Modeling: NO, Formation in Air
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Volatiles-N Release
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Predicted Volatile-N Release

Nitrogen Release (% daf Coal)
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Fuel Rich NO Predictions
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CO Near Burner
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Equilibrium CO
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CO Downstream from Burner
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N, vs. CO,




Conclusions

* Oxy-fuel can produce lower NO levels without recycling
NO destruction rates appear faster in oxy-fuel

* Modeling traditional NO mechanisms predicted known trends:
Suppression of NO formation by recycled NO
Destruction of almost all recycled NO
BUT... did not predict the results seen here

* High CO levels exist in the reducing zone of oxy-fuel flames
Thermal dissociation of CO, is only a partial explanation

Gasification of char by CO, is another possible source (suggested by
wall temperature data)

* A possible mechanism for enhanced NO reduction in oxy-fuel is
NO reaction with CO on the char surface
Char components can act as catalysts (e.g. Ca)
Probably coal-type dependent
Char reactions were not modeled
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Future Work
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Recent Improvements:

* Simpler coal feed system
* Additional sampling ports
* Secondary air preheating
* Air-cooled probe

* New stoichiometry:
SR, = 0.75 (unchanged)
SR, = 1.2 (previously 1.05)



Future Work

Future Experiments:

e Stage 1: High spatial resolution NO, O,, CO data with 3
coals

identify peak NO levels and size of reducing zones, study coal-type
dependence, close N balance with fly ash samples

* Stage 2: Dope reactants with NO
determine effects of NO recycling

* Stage 3: Measure HCN, NH,, CO,, SO,, SO,, and other
species by FTIR

* Stage 4: Collect simulated superheater ash deposits

look for indicators of altered corrosion tendencies in oxy-fuel
combustion
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Questions?
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