## **Optical Levitation of Absorbing Particles for Fuels Characterization**

#### Skigh Lewis, Alex Romriell, Larry Baxter Brigham Young University

February 27, 2008



"An expert is a person who has made all the mistakes that can be made in a very narrow field."

– Niels Bohr

## Why single particle studies?

Particles of interest in combustion processes:

- Pulverized coal (~40-70 µm)
- Biomass (~40 µm several mm)
- Ash particles
- Energetic materials
- Metals

## Background

#### Electrodynamic levitation

- Charged particles trapped in an electrodynamic chamber
  - Particles lose their charge at elevated temperatures
- Optical manipulation of *transparent* particles reported by Arthur Ashkin in 1970
  - Developed optical tweezers used in aerosol and biological research
  - Optical levitation of *opaque* particles reported in the early 1980's
    - To date, no mechanism has been established
    - Not necessary to charge particles

## **Project Objectives**

- 1) Establish comprehensive opaque-particle trapping mechanism
- 2) Develop *in situ* diagnostic tool to study single-particle reactivities of solid fuels

## **Experimental Methods**

- NdYVO<sub>4</sub>: Solid state cw, 532 nm
  - Variable power output up to 10.5 watts
- A lens focuses the beam
- A needle coated with particles and passed through the beam near the focal point suspends particles



## **Trapped Particles**



- Black liquor particles trapped at 2 watts
- All particles shown are optically trapped

## **Experimental Observations**

- Ar+, Nd:YAG, and Nd:YVO<sub>4</sub> laser beams oriented in any direction successfully levitate particles
  - Even when directed downward or angled
  - Vertical beams propagating upward are the most effective
  - Experiments have been performed at ambient pressures as well as under vacuum
    - Cannot trap below ~1 Torr

### **Experimental Observations**

- Most particles do not react while trapped and will stay trapped indefinitely with no apparent change in size or shape
- Trapped particles include:
  - silver, nickel, iron, magnesium oxide, tungsten, charcoal, carbon black, graphite, aluminum, wood dust, and black liquor

## Progress

- Developed Particle Levitation Model
  - Establishes trapping mechanism
- Experimental work
  - Particle size measurements
  - Particle temperature measured by Flir SC6000 IR camera (InSb, 640x512, 120 fps)
  - Mass loss measurements made by force balance from particle's position with respect to focal point

Diagnostic Tool

Determine single particle reaction kinetics from  $d_p$ ,  $T_p$ , and  $m_p$ 



## Particle Levitation Model

## Energy Balance

An energy balance estimates particle surface temperature

- Assumptions:
  - The only energy source is the incident laser light
  - The particles are inert
- Equates the heat from the laser light to the heat lost through convection and radiation

$$P \qquad S \qquad dA \qquad A \qquad h \qquad T \qquad T \qquad A \qquad \varepsilon \sigma \qquad T \qquad T \\ \stackrel{L}{=} \qquad \int_{\rho \ cs} \int_{\rho \$$







## Drag/Photon Force Models

- Fluent predicts  $F_{drag}$  as a function of  $d_p$  and  $T_p$ 
  - Modeled 8 particle diameters (5-200 µm) at 9 different temperatures (400-1700 K)
  - ~18,000 nodes in axisymmetric grid
  - Grid-independent solution
- Amsterdam Discrete Dipole Approximation (ADDA) predicts F<sub>photon</sub>
  - Axial component
    - Always in direction of beam propagation
  - Radial component
    - Acts as a restoring force pulls particles to center of beam

## Drag Force Model vs. Data



Comparison of Fluent<sup>™</sup> predictions with experimental results of the free-convective drag force (Mograbi & Bar-Ziv, 2005)

#### Photon Force Model



#### **Temperature Predictions**



## **Force Predictions**



## **Opaque Particle Trapping Mechanism**

Two major forces:

- Free-convective drag force
- Photon force
- Drag force dominates trapping mechanism for large particles, high emissivities

Photon force much smaller but not negligible
Importance of photon force decreases as particle size and emissivity increase

## Particle Sizing Procedure

## Particle Sizing

#### Measure Airy rings

Measurements using Mie scattering provide a very accurate size measurement technique



Knowing angle between each ring gives particle size

<sup>1.</sup>http://www.cambridgeincolour.com/tutorials/diffraction-photography.htm <sup>2.</sup>http://www.ugr.es/~jadiaz/docencia.htm

## Particle Sizing

# Image particles and compare to measured field of view



Because of reflected laser light, particle size changed based upon shutter speed

## Particle Size

- He-Ne (633 nm) beam traverses particle and enters camera, creates shadow
- Filters attenuate beam, block 532 nm light
- Focusing upon shadow allows particle size measurement





## Particle Size



- Matlab detects particle edge at 20% of maximum pixel intensity
- Sums number of pixels and determines diameter corresponding to cross-sectional area

## Particle Size Results



#### **Verification Results**



## Validation Results



Diagnostic Tool

Determine single particle reaction kinetics from  $d_p$ ,  $T_p$ , and  $m_p$ 





## **Possible Limitations**

#### Limitations

- Particle size
- Studies may be limited to char particles in some cases
- Cannot simulate boiler conditions

## Advantages/Application

#### Advantages

- Single particle studies
- Distinguish changing reactivities
- Access to gas pressure and composition regimes previously difficult to study
- Enable studies of reaction kinetics at conditions similar to commercial processes (gasification, oxyfuel)
- May be used to study light scattering, thermobaric weapons

## Acknowledgments

- Corporate Sponsors
- Larry Baxter
- Brent Webb, Justin Peatross, Dallin Durfee
- Brad Damstedt, Shrinivas Lokare, David Dunaway, Andrew Mackrory, Dan Smyth
- Undergraduate students:
  - Jeff Ashton, Craig Christensen, Kyle Brunner, Brian Jackson, Chelise Van De Graaff, and Oscar Medina



## Levitation Model

- For a given  $d_p$ ,  $\Phi_p$ , and  $r_c$
- Estimate  $\omega_o$
- Determine  $T_p$  from energy balance:
  - $\blacksquare T_p(\mathbf{\Phi}_p, \mathbf{I}, \mathbf{d}_p)$
- Determine  $F_{drag}$  and  $F_{photon}$ :
  - $\blacksquare F_{drag}(\mathbf{\Phi}_{p}, T_{p})$

 $\bullet F_{photon}(\mathbf{\Phi}_{p}, \mathbf{I}, d_{p})$ 

• Iterate until  $\Sigma F = F_{mg} + F_{drag} + F_{photon} = 0$ 

•  $\Phi_p$  = particle optical/physical properties