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Background and Objective

« Pilot scale oxy-fuel tests show an unexpected reduction in NO, emissions

« Early research suggests that reduction of recycled NO, is the dominant mechanism
(Okazaki and Ando, 1997) but...

« ...the mechanisms behind this reduction are not yet understood (Sarofim, 2007).

Our objective is to determine the causes of NO, reduction in oxy-fuel
combustion and thereby understand how NO, reduction might be maximized.

Experiments

Gas analysis is performed using a
HORIBA PG-250 portable gas analyzer
for O,, CO, and NO.

FRESILMIT

The new gas sample probe is air-cooled.

Addition of high spatial resolution gas
sampling ports has just been
completed.

An MKS FTIR gas analyzer with a heated
sample line is being added to allow
mea men O.. SO.. H NH
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Wall temperatures in oxy-fuel cases are unexpectedly
lower in the reducing zone. Combined with the high
measured CO values this suggests that endothermic
gasification by CO, becomes significant under oxy-fuel
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Possible NO, Reduction Mechanisms

+ Near-elimination of thermal- and prompt-NO, « Increased residence time in fuel-rich regions
+ More attached flame « Equilibrium considerations

+ Elevated NO concentrations + Reduced NO formation from char

+ Reduction of recycled NO, in the fuel-rich zone + Enhanced heterogeneous reburning

+ Temperature increases + Increased importance of gasification reactions

Modeling

Oxy-fuel combustion is modeled in
MATLAB using Cantera for gas phase
kinetics, and the CPD-NLG model for
devolatilization and fuel-N release.

Gases

A series network of CSTR's simulates a
plug flow reactor (1-D).

Homogeneous NO, mechanisms:
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Conclusions Future Work

« Oxy-fuel combustion can produce lower NO emissions independent of recycling, by
apparently faster NO destruction rates in reducing zones.

« Gas phase kinetic modeling using known NO mechanisms can predict trends observed
experimentally elsewhere: Suppression of NO formation by recycled NO, nearly complete
destruction of all recycled NO etc. but cannot predict the results seen here.

« As measured by others, high CO levels exist in the reducing zone of oxy-fuel flames.
Thermal dissociation of CO, can only partially explain this observation. Another possible
source of CO is gasification of char by CO, which is suggested by our temperature data.

« A possible explanation for the greater NO reduction in oxy-fuel is NO reaction with CO on the
char surface with char components (such as Ca) acting as catalysts. Such a mechanism
should be coal dependent.
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Future work is planned as follows:
Stage 1: High spatial resolution NO, O,, CO data with 3 coals

— identify peak NO levels and size of reducing zones, study coal-type dependence, close N
balance with fly ash samples

Stage 2: Dope reactants with NO

— determine effects of NO recycling
Stage 3: Measure HCN, NH,, CO,, SO,, SO,, and other species by FTIR
Stage 4: Collect simulated superheater ash deposits

— look for indicators of altered corrosion tendencies in oxy-fuel combustion

ACERC



