Fischer-Tropsch Reactor Model in VBA for Excel

Kyle Brunner, Joseph Bell, Uchenna Paul, Calvin Bartholomew, William Hecker Objective: Develop and validate a 1-D Fixed-bed reactor model that accurately reflects industrial reactor behavior

Model Description

The reactor model is a shell and tube heat exchanger with catalyst pellets on the tube side and high-pressure boiling water on the shell side. The user specifies the final CO conversion and the VBA code solves the design equations^{1,2} by a 4th order Runge-Kutta algorithm at fixed steps (typically 3 mm) down the reactor until the desired conversion has been reached. Kinetic equations, catalyst geometry, catalyst properties, and reactor conditions are user inputs.

-	
www.icat.dtu.dk/intro/index.h	tı

E_A (J/mol)

90 927 0.0750 -6 753

84,800 0.0180 -26,100

73,000 3.05E-04 -23.629

∆H_B (J/mol)

Model Validation

- · Partial validation using Shell Bintulu plant data
- 9 design parameters constrained by the Shell report
- 7 design parameters assumed/adjusted
- · 3 of 4 performance parameters matched within 10% of reported values

	Co/ZrO ₂ /SiO ₂ (Shell)	
Parameter	Reported ³	Assumed
Input/Operating Parameters		
HC Production (bbl/day)	6,700	
% CO	-	32.3
H2/CO Ratio	2.15	
Inlet Temp (K)	-	468
Pressure in (bar)	40	
Recycle Ratio	-	3.0
CO conversion (%)	-	75
C2+ Selectivity	96	
CH ₄ Selectivity	4	
CO ₂ Selectivity (% of CO converted)	1	
Reactor/Catalyst Characteristics		
Tube diameter (cm)	5.0	
Number of tubes	8,000	
Cooling water Temp (K)	-	460.5
Catalyst particle diameter (mm)	2	
Bed void fraction	-	0.40
Catalyst activity	-	0.20

Output/Performance Parameters	Reported	Calculated
Effectiveness factor	-	0.96
Space velocity (h-1)	-	1,139
Pressure drop (atm)	-	0.28
Tube length (m)	20	19.4
Catalyst charge (m3)	310	301
Catalyst productivity (g _{C5+} /g _{cat} -h)	0.092	0.12
Outlet or Maximum Temp (K)	510	474

Industrial Significance

- Fischer-Tropsch (FT) synthesis has been commercial since WWII
 - FT technology has become a viable alternative source of liquid fuels due to concern over foreign oil dependence and fuel prices
 - · Feed stocks include natural gas, coal, biomass, and garbage.
 - Fixed-bed design is simplest and most economical for smaller scale production
 - This model demonstrates ability to: -Develop relatively cheap, robust codes -Gain insight into reactor design issues -Explore ranges of operating parameters

Model Characterization

Kinetic Model Study

Figure 1. Inlet T vs. Reactor Length for Generalized & Unpublished

Pressure Study

Recycle Ratio Study

Figure 2. Parametric study of recycle ratio for Ger

Particle Diameter Study

Figure 4. Particle Dia held constant) vs. Reactor Length (effective diffusion length

Forment, G. F.; Bischoff, K. D. *Chemical Reaction Analysis and Design*; 2nd Edition; Wiley Series in Chemical Engineering: New York, 1990; pp. 620-625 ³C. H. Bartholomew and R. J. Farrauto, *Industrial Catalytic Processes*; 2nd Edition; John Wiley & Sons, Inc., New Jersey, 2006. Chapter 6 & p. 459