Comprehensive Investigation of Biomass Fly Ash in Concrete: Strength, Microscopy, Quantitative Kinetics and Durability

Shuangzhen Wang and Larry Baxter

Chemical Engineering Dept.

Brigham Young University

ACERC annual conference February 28, 2007

Outline

Introduction

Strength, Microscopy and Kinetics

- Strength and Microscopy of ash concrete
- Strength and kinetics (fly ash/Ca(OH)₂)

Durability (ASR expansion Mitigation)

Story about Pozzolan

When: 1st century
What: (volcanic ash + lime) = cement
Who: ancient Romans and Greeks
Where: best materials near Mount Vesuvius, Bay of Naples, Italy
Why: named after the village- Pozzuoli

Note: Modern Portland cement has a history of only 180 years.

Sears Tower-A Fly Ash Concrete Building

2) No. 1 tallest building in the world until 1998

Background

Non-compliant coal fly ash becoming common:

- Emissions control
- Opportunity fuels such as biomass-coal cofiring
- **ASTM C 618**
 - Allows Class C Class F (coal-derived) fly ash
 - Excludes all non-coal-derived material in fly ash

Chemistry

- ★ Cementitious reaction $2Ca_3SiO_5 + 7H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 4H_2O + 3Ca(OH)_2 Eq. 1$ ★ Pozzolanic reaction $3Ca(OH)_2 + 2SiO_2 + H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 4H_2O$ Eq. 2 ★ Alkali silica reaction (ASR) • $4SiO_2 + 2NaOH = Na_2Si_4O_9 + H_2O$ Eq. 3 • $SiO_2 + 2NaOH = Na_2SiO_3 + H_2O$ Eq. 4
 - Expansion \rightarrow cracks \rightarrow failure
 - "Cancer" of concrete
- Fly ash addition will depress or even eliminate ASR, mainly depending on properties and replacement ratio of fly ash.

Fly Ash

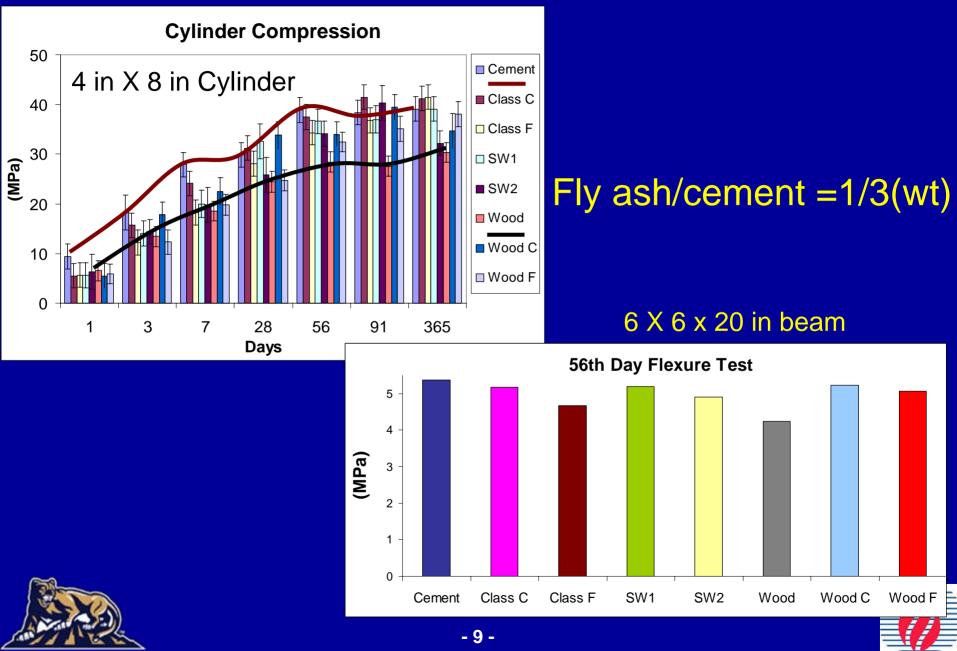
Coal: class C and class F
Wood: fly ash from pure wood combustion
Five cofired fly ashes (coal/biomass):

Name	Coal	(%)	Biomass	(%)	
SW1	Galatia coal	80	Cofired With	Switch Grass	20
SW2		90			10
10P	Powder River Basin	90			10
20P		80			20
SAW		80		Sawdust	20

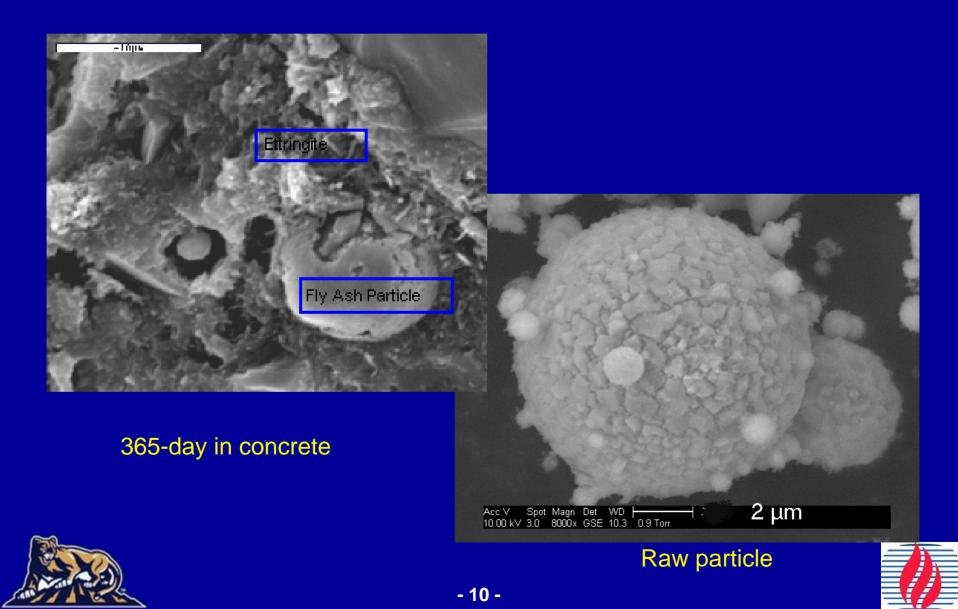
Outline

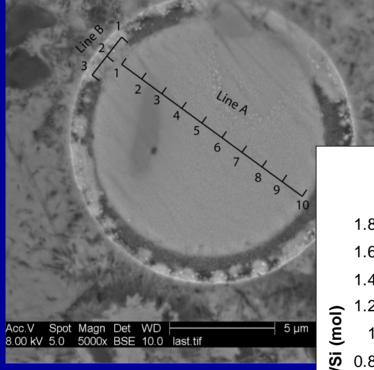
Introduction

Strength, Microscopy and kinetics

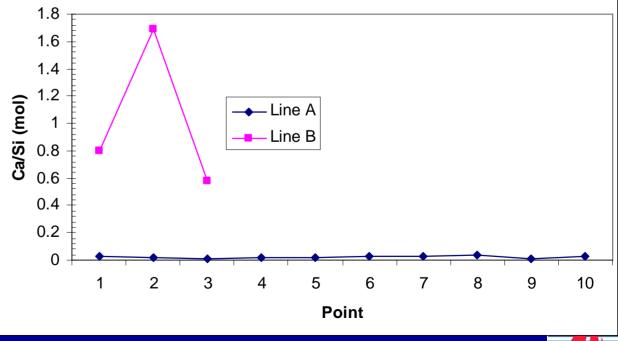

- Strength and Microscopy of ash concrete
- Strength and Kinetics (fly ash/Ca(OH)₂)

Durability (ASR expansion Mitigation)




Strength

SEM (reacted/raw) SW1 Fly Ash



EMPA Chemical Analysis

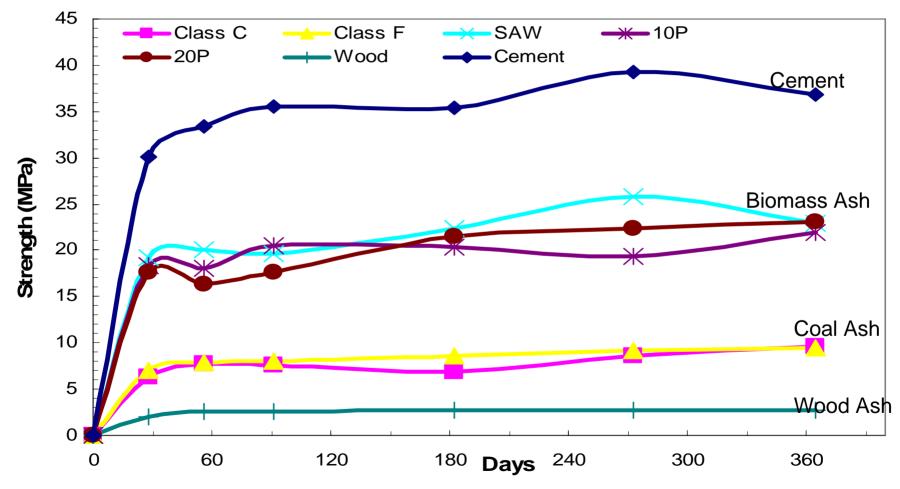
One year in Concrete

Chemical analysis of SW1 fly ash particle

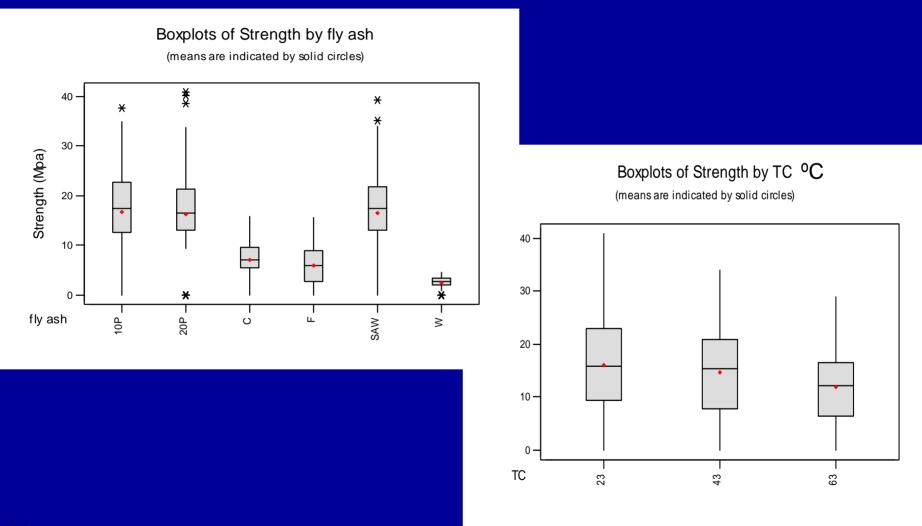
Outline

Introduction

- Strength, Microscopy and kinetics
 - Strength and Microscopy of biomass fly ash concrete
 - Strength and Kinetics (fly ash/Ca(OH)₂)
- Durability (ASR expansion Mitigation)



Experimental Setup


Variable	Description				
Fly ash(6)	C, F, Wood, SAW, 10P and 20P				
Fly ash / Ca(OH) ₂ (3)	80 / 20, 70 / 30, 60 / 40				
Temperatures (3)	23°C, 43°C, 63°C				
Testing Dates (6)	1, 2, 3, 6, 9 and 12 months				
Replicates	2				
Reaction extent of Ca(OH) ₂	TGA				
Samples Curing	Vacuum sealed in Mason Jars				
Strength test of 2 in cube	Compression				
A CONTRACTOR OF THE OWNER OWNE	- 13 -				

Compression Strength 70/30 mixing ratio, 23°C (as examples)

Statistical Strength Analysis

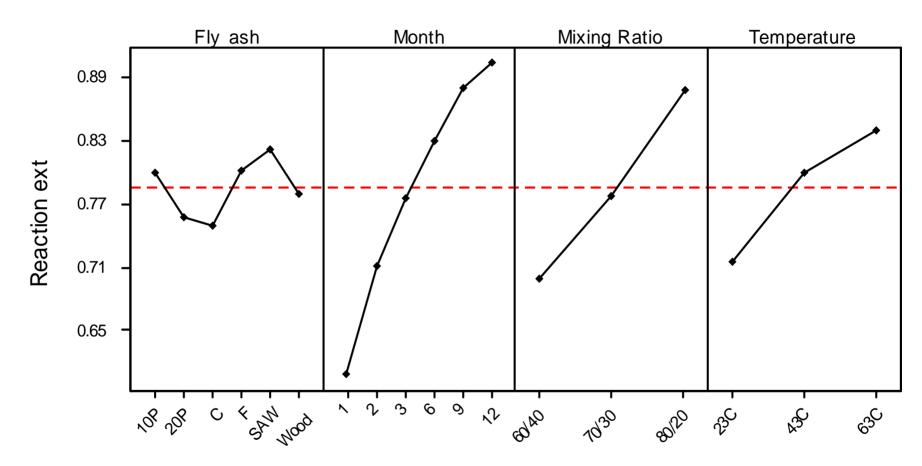
Quantitative Kinetics

Parabolic diffusion

$$\alpha^2 = kt$$

• First order (CH)

$$-\ln(1-\alpha) = kt$$


• First order to CH & ash, respectively

$$\frac{d\alpha_{CH}}{dt} = k(1 - \alpha_{CH})(1 - \alpha_{ash})$$

 $k = k_0 * \exp(-E_{act} / RT)$

Where

Quantitative Kinetics (continued-1)

Therefore, first order of CH and parabolic diffusion mechanisms are not appropriate.

Quantitative Kinetics (Continued-2)

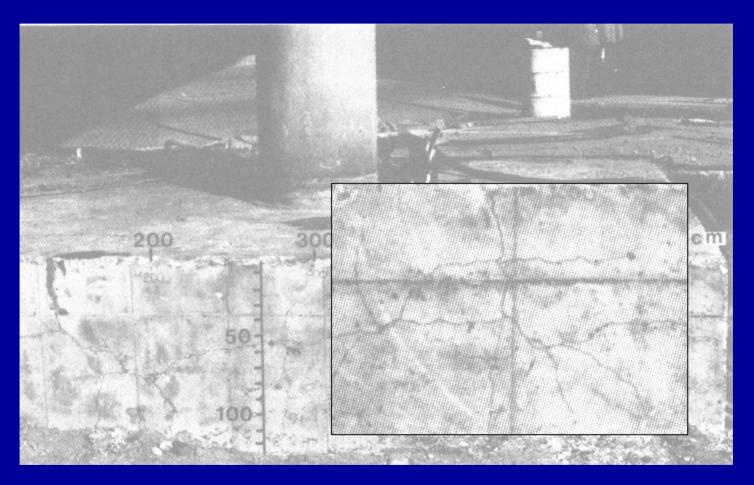
	Kinetics Parameters				Excess amount of ash		
	k ⁰ (Month ⁻¹)	Ea/R (K)	b	R ²	80/20	70/30	60/40
F	199453	3639	1.875	0.95	0.425	0.1375	-0.15
С	38.71	986.2	2.28	0.94	0.344	0.016	-0.312
Wood	5.05	191.1	2.99	0.93	0.202	-0.197	-0.596
10P	2408	2316	1.74	0.94	0.452	0.178	-0.096
20P	2535	2391	1.86	0.93	0.428	0.142	-0.144
SAW	245700	3688	1.71	0.96	0.458	0.187	-0.084

Note: b is the stoichiometric coefficient, one gram of fly ash chemically combines with b grams of Ca(OH)₂

Outline

Introduction

Strength, Microscopy and kinetics


- Strength and Microscopy of biomass fly ash concrete
- Strength and Kinetics (fly ash/Ca(OH)₂)

Durability (ASR expansion Mitigation)

ASR cracks within field concrete

ASR Experimental Setup (Expansion)

Materials:

- High alkali cement (1.15% Equiv. Na₂O)
- Reactive aggregate: wood opal Virgin Valley, Nevada
- 6 fly ashes C , F , wood, SAW, 10P and 20P
- 3 ratios of fly ash/cement: 15/85, 25/75 and 35/65
- Curing container: ASTM containers
- Sample dimensions: 1 X 1 X 10 inches
- Expansion:
 - 1, 14, 28, 56, 84, 126, 182 and 364 days after mixing
 - Digital length comparator (precision ±0.0001 in) Note 1: Observe ASTM C 227 and 441

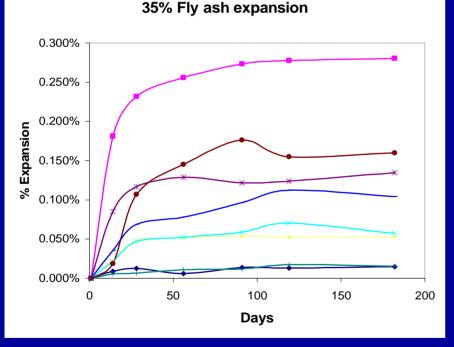
Note 2: Equiv. Na₂O%=(Na₂O + 0.658 K₂O)%

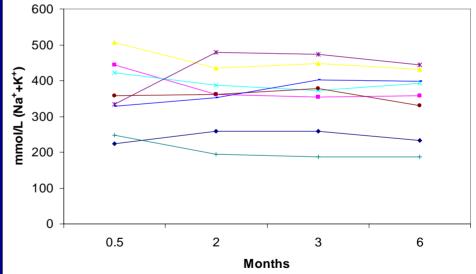
ASR Experimental Setup (Pore solution)

- Specimens: 2 (D) X 4 (H) inches cylinder
- High pressure extrusion (up to 240 thousand lbs)
- Pore solution analysis
 - Test days: up to 6 months after mixing
 - Ions analyzed: OH^{-,} Na⁺, K⁺ and et al
 - Test instrument: 1) Atomic absorption, 2) Ion Chromatography and 3) Acid-base titration.

Expansion and Pore Solution Extrusion

Pore solution Double-layered prestressed cylinder Base


Max operation Load of 240 thousand pounds with 100 cycles finished


ASR Expansion and Pore Solution Analysis

Soluble alkali (%): C (1.03), F (0.53), wood (1.78) SAW (2.88) 10P (2.71) 20P (2.46) Cement (1.15) (ASTM limit<0.6)

Pore Solution Analysis (35% flyash)

Conclusions

Biomass Fly ash has

- Equal strength to that of pure cement concrete from 1 month to 1 year after mixing.
- Significant pozzolanic reaction up to one year in concrete.
- 3-6 times the strength of coal ash samples with Ca(OH)₂.
- Comparable strength with Ca(OH)₂ even to pure cement.
- Quantitative kinetics has been derived.
- Mitigates ASR expansion to within ASTM limits.
- Matches or outperforms coal ash in reducing ASR expansion.

Acknowledgement

Thanks

Dr. Baxter for his consistent academic and financial support.

Undergraduates Sharon Bragonje, Justin Tullis, Rick Dalton, Emilio Llamazos and Amber Miller for their hard work.

