Drag Characteristics of Non-Spherical Particles in Transitional Flow

Kyle Larsen - PhD Candidate

Dale Tree – Associate Professor, Mechanical Engineering

ACERC Conference

Feb. 27-29, 2007, Provo UT

Background

Example: Swirl Stabilized Burner

Swirl Stabilize burners involve <u>two-</u> phase flows.

The solid phase velocity differs from the gas phase velocity in regions of <u>high</u> <u>acceleration</u>.

The difference between the particle and gas phase velocity is call <u>velocity slip</u>.

<u>Penetration of fuel</u> relative to recirculation influences particle burnout and NO_x formation.

Relative velocities do not produce turbulence but <u>the flow is already</u> <u>turbulent.</u>

There are no measurements of <u>drag</u> <u>coefficients for non spherical particles</u> in this type of flow

Background

Typically drag coefficients are correlated with Reynolds number

$$Re = \frac{\rho VD}{\mu}$$
$$V = V_{gas} - V_{particle} = V_{slip}$$

For combustion applications

 $\rho \approx 1.0 \text{ kg/m}^3$ $V_{slip} \approx 1.0 \text{ m/s}$ $D \approx 100 \text{ x } 10^{-6} \text{ m}$ $\mu \approx 20 \text{ x } 10^{-6} \text{ Ns/m}^2$ $\text{Re} \approx 5$

- Re = 5 is in the transition region between stokes flow and fully developed turbulent flow
- C_d is a function of Re for small Re
- C_d is form drag dominated, not function of Re for Large Re

Objectives

- Measure velocity of gas phase, spherical, and nonspherical particles in a backward facing step
- Compare gas phase velocity to published values and CFD predictions
- Use particle and gas phase measurements to determine the drag coefficient of the particles

Experimental Setup

Inlet flow Re = 50,000

Experimental Matrix

Complete Map: 19 points at each axial location (10), total of 190 points

Gas Phase: 1-10 μm particles, 3 maps taken and repeated points when a particle velocity was taken

Spheres: 3 Sizes 41, 49, 57 μ m, Three complete maps for each size

Gravel Shaped Particles: 3 sizes 50 – 150 μ m, ground glass, At least one map for each size.

Flakes: 3 sizes: 96, 183, 310 μ m, 5 μ m thick; 4 locations

Cylinders: 3 lengths 99, 151, 219 μ m, 16 μ m diameter; 4 locations

Terminal Velocity: 1 location for each particle size

Experimental Setup

Particle Preparation

Particles were classified in a shaker, usually sieved 5 – 10 times

Small particles were a problem, they could not be physically removed

Examples of Particles

Gravel, 57µm

Flakes, 115µm

Cylinders, $115 \mu m$

Results - Spheres

Gas Phase:
Sphere 41 μm:
Sphere 49 μm:
Sphere 57 μm:

Flow Characteristics

- Flow is negative or recirculates behind the step.
- Recirculation zones ends at about 6 step lengths below the step.
- Peak velocity moves from the center of the upstream geometry to center of chamber by 12 steps
- Particles do not decelerate as fast as the gas phase
- The larger the particle, the larger the velocity slip

Results – Spheres, C_d

- Terminal velocity produced C_d slightly below published values.
- Both our data and data from Ruck, backward facing step flows produce C_d slightly above published value.
- C_d shows same slope and functional dependence on Re suggesting viscous friction effects, Stokes flow

Results – Cylinders, C_d

- Terminal velocity produced C_d almost the same as flow theory.
- Measured C_d for the turbulent flow below the step is much higher (6 times) than theoretical value.
- C_d is not a function of Re as is the case for form drag only

Results – Cylinders, C_d

- Terminal velocity produced C_d almost the same as flow theory.
- Measured C_d for the turbulent flow below the step is much higher (29.5 times) than theoretical value.
- C_d is not a function of Re as is the case for form drag only

Summary and Conclusions

- Velocity measurements have been obtained for nonspherical particles (gravel, flake and cylindrical shaped) in a backward facing step
- The step produces a turbulent gas phase flow that decelerates producing velocity slip for solid particles.
- Velocity slip was found to increase as particle size increased, and for a given mass, increased in the following order: flake, cylinder, gravel, and sphere.

Summary and Conclusions

- When the air was quescent, the drag coefficient measured on the particles matched published theoretical values.
- In the backward facing step, the drag coefficients were significantly higher than theoretical values, increasing with increasing asphericity.
- The aspherical drag coefficients for aspherical particles were insensitive to reynolds number suggesting drag is dominated by form drag, not viscous surface drag.

Acknowledgments

We would like to acknowledge support and help from:

- The Brigham Young University, Department of Mechanical Engineering
- Dr. Mardson McQuay
- Dissertation Defense Committee: Daniel Maynes, Jeffrey Bons, Deryl Snyder, Brent Webb

Questions

Experimental Matrix

Experimental Matrix

