

Investigation of Impaction and Capture Efficiency During Coal Ash Deposition

Shrinivas Lokare, Bob Chan, Larry Baxter, Dale Tree Brigham Young University, Provo, UT 84602

The 21st Annual ACERC conference, February 27-28, 2007

Outline

- Motivation
- Objectives
- Theory
- Approach
- Results and Discussions
- Conclusions

Motivation

- Size and species distributions of inorganic part of fuel govern the involvement of various mechanisms of ash deposition
- Prior knowledge of participation of such mechanisms and their degree of involvement facilitates the cobustor and/or gasifier operation through improved design and operating parameters

Objective

 Develop experimental and predictive representations inertial impaction

$\frac{dm}{dt} = I \cdot G + E + T + C + R$ (*I*) Inertial impaction (*E*) Eddy impaction (*T*) Thermophoresis (*C*) Condensation (*R*) Chemical Reaction

Capture Efficiency (G) is the fraction of particles that stay on the surface after impaction.

Inertial Impaction

- η = Impaction efficiency
- G = Capture efficiency
- ζ = Collection efficiency

$$m_{ashflow} = \frac{m_{fuel} \cdot x_{ash} \cdot A_{projected}}{A_{reactor}}$$
$$m_{impaction} = m_{ashflow} \cdot \eta$$

$$m_{capture} = m_{impaction} \cdot G$$

$$\zeta = \eta G$$

Impaction Efficiency model

Stokes Number (Modified Reynolds Number) $Stk = \frac{\rho_{p} d_{p}^{2} V_{p}}{9 \mu_{g} d_{c}} \Psi$

 Ψ = Non-Stokesian Drag Correction

Impaction efficiency: The fraction of particles that impact on a deposition surface.

$$\eta(Stk) \cong \left[1 + b(Stk - a)^{-1} - c(Stk - a)^{-2} + d(Stk - a)^{-3}\right]^{-1}$$

Where a, b, c and d are empirically-derived parameters.

Reference - Report on "Ash deposition and corrosion mechanisms", by Dr. Larry Baxter, Sandia National Lab.

Experimental facility

Particle Capture Arrangement

High temperature vacuum grease provides 100% particle capture system.

Rotating probe arrangement (not shown) provides uniform particle capture.

Fluent Simulation

- Model 2D, segregated
- Grid Quadrangular, Paved
- Cells 12308
- Viscous model Standard k-w (2 equation)
- Working fluid Air

Fluent Simulation

- Operating Parameters
 - Particle Velocity : 0.5 100 m/s
 - Particle diameter : 5 2000 microns
 - Gas Velocity : 95% of Particle Velocity
 - Gas Temperature : 1300 K
 - Particle Temperature : 1400 K
 - Probe Surface Temperature : 800 K
- Combination of particle velocity and particle diameter selected for Stokes number range: 0.01 – 150.

Fluent Simulation

Results – P-Distribution

For small D_p , low V_p , viscous force dominates momentum, while for large D_p , high V_p , momentum force dominates viscous force.

Results – Impaction Efficiency

Impaction efficiency is ~30% lower in Viscous flow than Potential flow. Predictions for viscous flow within 8-10% of experimental data.

$$m_{ashflow} = \frac{m_{fuel} \cdot x_{ash} \cdot A_{projected}}{A_{reactor}}$$

$$m_{impaction} = m_{ashflow} \cdot \eta$$

- η = Impaction efficiency
- G = Capture efficiency
- ζ = Collection efficiency

$$m_{capture} = m_{impaction} \cdot G$$

$$\zeta = \eta G$$

Results – Capture Efficiency

Particle Escape $V_p < V_{threshold}$ **Particle Capture** $V_p = V_{threshold}$ **Particle Rebound** $V_p > V_{threshold}$

 $V_{threshold} = F(V_{incident}, V_{gas}, T_{particle}, T_{surface}, C_{ash}, \mu_{surface}, \mu_{particle}, \theta_{impact}, \dots)$

Impaction Efficiency

l

Conclusions

- Viscous flow pattern creates a pressure distribution upstream of heat transfer surface reducing probability of particle impaction.
- Actual impaction efficiency is 30-40% lower than that predicted by potential flow correlation.
- Fluent model predicts impaction efficiency within 8-10% of experimental data. Experiments need to be performed over complete range of Stokes number.

Acknowledgements

- Bob Chan, Luke Werrett
- Dr. Baxter, Dr. Tree, Dr. Maynes
- GE Global Research

