Application of Advanced Computational Technologies in the Fossil-Fired and Nuclear Electric Power Generation Industries

Joseph D. Smith, Ph.D. Alion Science & Technology Owasso, OK 918-274-9398

jdsmith@alionscience.com

OUTLINE

Aligned with your needs.

- Background and Introduction
- Application Developing an Optimal Design to Reduce Temperature Mal-distribution from a 450 MW Air Preheater
- Application Meeting 316(b) regulations by Identifying HZOI for Fitzpatrick Nuclear Power Plant
- Conclusions and Summary

Alion's Experience In Electric Power Industry

Fossil Fired Plants

Aligned with your needs.

- Assessment and development of "best" NOx abatement strategies
- Optimization of flow balancing in Combustion air supply ductwork
- Multi-fuel modeling of combustion systems
- Inspection and testing for plant performance
- Plant design services
- Coal blending analysis
- Installation services
- Fuel Conversion analysis
- Cooling water intake analysis
- Mitigation of Coal Slagging
- Nuclear Power Plants
 - GSI-191 LOCA Analysis
 - ECCS Strainer Design/evaluation
 - 316 (b) Cooling Water Usage
 - Fire Protection
 - Chemical Effects in Recirculation Pool

Aligned with your needs.

GSI-191: Loss of Coolant Accident (LOCA) in a High Pressure Steam Line in a PWR

Westinghouse NUCLEAR STEAM SUPPLY SYSTEM

Analytical Tools Used

- o Debris Generation
- o Transport Logic Charts
- o CFD Analysis
- o Testing

Strainer Array with Fiber Testing

Test Flume with Strainer Array

Application – Air Preheater on T-Fired Boiler

- Fuel Type: PRB Coal
- Furnace Type: T-Fired Boiler (450 MW)
- Analysis Tool: FLUENT version 6.2
- Main Task: Develop solution to rebalance measured temperature mal-distribution coming from air-preheater to ESP's/ID fans
- Customer: American Electric Power Oolagah Plant (reference available)

Application – Air Preheater on T-Fired Boiler

Side View of System Geometry

Application – Air Pre-heater on T-Fired Boiler

Aligned with your needs.

Air Pre-heater Outlet Gas Temperatures (°F)

	Point 1 (nearest floor)	Point 2	Point 3	Point 4	Point 5	Point 6 (nearest ceiling)
Port 1 (North)	321.20	325.65	332.80	326.30	325.75	322.80
Port 2	319.65	335.30	336.85	329.75	320.55	327.35
Port 3	329.05	333.45	338.25	325.60	318.15	323.00
Port 4	333.70	335.80	333.40	328.05	317.25	323.40
Port 5	334.70	326.80	322.95	321.10	315.75	315.55
Port 6						
Port 7	265.05	285.40	292.50	300.90	293.40	293.70
Port 8	277.25	277.20	288.40	291.60	292.60	293.90
Port 9	266.45	273.75	285.65	286.85	288.60	286.90
Port 10	256.80	260.30	269.10	272.55	279.00	295.15
Port 11	244.80	249.75	258.90	267.40	277.20	274.10
Port 12 (South)	234.35	239.50	246.00	254.75	262.35	257.85

Application – Air Pre-heater on T-Fired Boiler

Aligned with your needs.

Measured outlet gas temperature (°F) from pre-heater (boundary condition)

Air Pre-heater Model Geometry

ACERC 2007 Slide <u>13</u>

Predicted Duct Temperature Profile (°F) (Plan view 5 ft below inlet elevation 699'- 9 ¹/₂")

Application – Air Pre-heater on T-Fired Boiler

Summary

- Inlet flow rate: 1512.29 lbm/s
- Predicted ID fan temperature (°F)
 - North
 - Average: 323.04 (data is 321.26)
 - Minimum: 317.34 (data 312.67)
 - Maximum: 326.35 (data 331.71)
 - South
 - Average: 271.99 (data is 259.68)
 - Minimum: 257.38 (data is 252.28)
 - Maximum: 287.56 (data is 268.36)
- Predictions high on South end (likely due to air leak)
- How to fix?

Application – Air Pre-heater on T-Fired Boiler

Proposed Modifications

Free Jet

Aligned with your needs.

Analysis of Proposed Modifications

Free Jet into Hot Side

Duct on Cold (Hot) Side

Analysis of Proposed Modifications

Combine Proposed Modifications

ullet

Analysis of Proposed Modifications

Summary of Proposed Modifications

	North Temp (⁰ F)	South Temp (⁰ F)	Temp Range (ºF)
Data	321.3	259.7	61.6
Base – CFD	323.0	272.0	51.0
Free jet	309.7	272.6	37.1
Hot Duct	319.9	275.3	44.6
Cold Duct	319.9	274.4	45.5
Cold Duct - Venturi	290.4	276.2	14.2

Predicted Temperature Profile (°F) Comparison (Plan view 5 ft below inlet elevation 699'- 9 ¹/₂")

Added Benefit? Influence of Temperature on ESP Performance

Electrostatistic Precipitation

NOTES:

- Resistivity > 10¹¹ makes ESP operation difficult
- 2. Resistivity < 10⁷ allows re-entrainment of particles
- 3. Current System can not tolerate additional mass flow to ESP/ID fans
- 4. Cold air added upstream of ESP may create "cement" inside ESP duct work

p. 177, <u>Handbook of Environmental Engineering.</u> (Vol 1) "Air Pollution Control Engineering". Wang, Pereira, Hung – Editors, Humana Press (2004).

Plant Solution:

- Plant to design/install FGR system (can't use outside air) to push cooler gas to hot side through Venturi duct.
- Update CFD model to include turning vanes at ESP's inlet.
- Evaluate louver downstream of ESP's to add "temperating" air (added mass will increase fan amps/power usage).

Application – HZOI for CWIS at Fitzpatrick Nuclear Power Plant

- Motivation: 316 (b) environmental regulations
 - Approach: Apply CFD to Analyze HZOI
- Analysis Tool: Flow3D version 9.0
- Main Task:
- Customer:

Flow3D version 9.0 Predict HZOI for plant's environmental impact on how intake effects fish population in water body

Fitzpatrick Nuclear Power Plant (reference available)

Aligned with your needs.

Approach:

- CAD model developed for CWIS submerged in Lake Ontario with assumed 2° slope to lake bed
- CFD used to predict velocity currents around CWIS considering ambient lake currents (0.29 ft/s)
- HZOI defined as region with a 5% deviation in water currents from ambient lake currents
- HZOI shown at lake bottom, through CWIS centerline, and at lake surface

Existing Cooling Water Intake Structure Design

Intake structure view from shore looking North

Model boundaries and initial conditions

Aligned with your needs.

Cooling Water Intake Flow Rate withdrawn as mass sink

388,600 GPM outlet flow withdrawn through CWIS center as mass sink

Flow-3D[™] software used for transient simulation

Mean-Kinetic-Energy change over time quantifies steady state conditions

Predicted HZOI – regions where predicted flow currents deviate from ambient flow currents by more than 5%

Area where current velocities are 5% less than the ambient Lake Ontario currents due to the JAF CWIS

Entrainment HZOI where current velocities are 5% greater than the ambient Lake Ontario currents due to the JAF CWIS

100 Feet

Velocity Iso-Surfaces, Top View

Predicted HZOI: Areas where predicted velocity magnitude > 5% ambient flow current

Summary

Entrainment HZOI (> 0.01 fps above ambient) size varies with lake elevation:

- Lake bottom 30,011 ft² (3.0% domain) has velocity magnitude > 5% ambient lake current (0.29 fps)
- CWIS centerline 163.043 ft2 (16.3% domain) has velocity magnitude > 5% ambient lake current
- Lake surface 162.716 ft2, (16.3% domain) has velocity magnitude > 5% ambient lake current

High velocities concentrated directly in front of intake structure

- 1 fps > ambient current extends in front of intake structure ~1.5 ft
- 0.5 fps > ambient current extends in front of intake structure ~5 ft (impingement HZOI)
- 0.4 fps > ambient current extends in front of intake structure ~6 ft

Summary cont.

Aligned with your needs.

Low velocity region:

- concentrated on east and west sides of CWIS represent good sampling regions near CWIS intake
- on west side of CWIS attributed to water current being drawn toward CWIS which then stalls in "wedge" section of intake
- on east side of CWIS attributed to intake suction slowing ambient current downstream of CWIS leading to a "shadow" effect
- centered 10' from far eastern point of CWIS
- CFD clearly identified expected HZOI for general CWIS geometry with general bathymetry and topography data in a typical water body

Conclusions

Aligned with your needs.

- Alion provides Advanced Analysis to Fossil and Nuclear Electric Power Industries
- Application of comprehensive CFD based Engineering tools (Fluent and Flow3D) to complex industrial problems
- Developed "right" solution for AEP to balance Air Pre-heater temperature mal-distribution
 - plant designing system based on results)
- Identified CWIS HZOI for Fitzpatrick Nuclear Power Plant
 - Plant used this as part of their application to environmental regulatory agency
- Alion is <u>committed</u> to helping clients meet difficult challenges generating electric power in clean, safe, and environmentally friendly way