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Traditional Methods

Finite Difference — Divided Difference Approximations for Derivatives:

Forward Difference Formulation:
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2 2
fxr 20 = 100+ S oax s ST @A)
dx dx 2!

Taylor’'s Series
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FIGURE 23.1 From “Numerical Methods of Engineers” by Chapra & Canale

Forward finite-divided-difference formulas: two versions are presented for each derivative. The
latter version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.
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Backward Difference Formulation:

f(x— AX)= f(x)—% AX

f(x— 2Ax)—f(x)+£2A d*f (24x)
dx

f(x—nAx)= f(x)— inA
dx

of
OX

April 28, 2006

— O(AX"), W O(Ax"™™),

“aylor’'s Series




From “Numerical Methods of Engineers” by Chapra & Canale

NUMERICAL DIFFERENTIATION
First Derivative E
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Central Difference Formulation (n even):
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Taylor's Series
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From “Numerical Methods of Engineers” by Chapra & Canale

First Derivative .
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* Most widely used.
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The same FDE’s can be derived by
assuming a polynomial solution.

e f(x) =ax?+ bx +c

If f(x;_,), f(x;) and f(x;,,) are known then

of _ f (Xi+1) — f (Xi—l)

OX X; Xivn — X

o't _ f(xg)=2F(x) + F(xiy)
axz X; ) (Xi+l_Xi )2

e The purpose of this work is to investigate finite
difference equations based on functions

representing the physics of the process.



When don’t Traditional Methods
work well?

— Singularities

— Discontinuities

— With strong nonlinearities

For Example:
— Point sources or sinks
— Line sources or sinks
— Multi-phase flow
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Reservolr Simulation Is such a
problem

* Reservoir simulators are computer
programs that simulate the flow of oil, gas
and water through naturally occurring
underground accumulations know as
reservoirs.

* Reservoir simulations are run repeatedly
In order to optimize hydrocarbon recovery.

= Reservoirs contain wells that cause near
singularities in the reservoir pressure.



Lets use functions with singularities to
simulate reservoir pressures.

e Around a straight
line well p~In(r)

e Around a point
source or sink p~1/r

Try PDE’s based on

P=aln(r)+bx+d
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The resulting FDE’s contain
pseudo-permeabilities:

(i =X)L 3

ZQIn( 1) ZQIn(n)



Hypothetical Reservoir

Two Line Source In
rectangular reservoir

(Exact solution from Morel-Seytoux)
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Results
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Finite Volume Equations

 Integrate over cell face to define the
average flux

e Use average value instead of value at
one point

e Result iIn a more accurate model
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Results
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Peaceman’s Corrections

Peaceman’s 1978 Well Equation

] where ¢=0.2
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Composite Solution based on:

P=P, + QU 1h T 14 ax? +bx+
27Kh

w

P=P +P,
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Conclusions

* Finite difference equations based on
equations that include In(r) terms
Improve reservoir simulation results
considerably.

* Finite difference equations for the
simulation of other processes may
enjoy similar improvements through the
Incorporation of FDE’s based on
approximate physical solutions.
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