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Introduction and Background %

Inorganic constituents are a principle factor
-boiler size
-heat transfer characteristics
-boiler-side corrosion rates.

Ash deposits develop on boiler tubes and walls
-reduced heat transfer
-increased corrosion

Dynamic deposit morphology
-heavily dependant upon temperature — deposit thickness

Characterization of ash deposit
-deposition rate
-deposit thickness
-surface temperature
-heat flux

An effective model will improve boiler reliability, efficiency, and flexibility




Ash Deposit Model
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Model Assumptions %

Quasi-steady thermal transport

» Deposit thickness grows very slowly compared to the transient thermal
transport

* FLUENT solves for steady state transport at each time step

1-D heat transfer (neglecting conjugate heat transfer)

- constant ash properties throughout each layer:
- coefficient of thermal conductivity, k
« density, p, and emittance, ¢
- specified mass flux, M", and mass fraction captured, G

» Ash deposit negligibly thin compared to reactor width

Deposit is on a vertical wall
Specified wall temperature
Specified effective slagging and effective sintering temperatures




Method — Thermal Transport Analysis

A User Defined Function (UDF) models an ash deposit:
* deposit growth
- thermal transport through the deposit (transient and steady state)
Coupled with FLUENT, the surface temperature (T_ ) and heat flux (g”) distributions are determined
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Method — Steady State Mass Transport Analysis

- Creeping regime

Reynolds numbers (4.44 x 10-5 to 6.49 x 104), high viscosity and low velocity of the slag
 The surface temperature and heat flux are calculated after each time step as deposit growth

progresses in time.
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Layer Formation and Temporal Evolution
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» The simulation marches through time, adding layers until
steady state is attained (slagging conditions may or may not
exist




Model Scenario: Industrial Coal-fired Reactor
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» Scenario allows for slagging conditions
 Obtained results for transient and steady
state conditions

* UDF run in Fluent
-2D domain, 4m x 16m
-radiation only (surface to surface)
-quadrilateral mesh (40 x 20)

* time step of 1.0 min

- typical k, €, p values from literature
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Results Ash Thickness vs. Position

Deposit layers and thicknesses vs. wall position (140 min)

ol
X
[N
ol
w
l
|
1

L (m)

slag
frozen
sintered
particulate

i i i
0 10 20 30 40
Position y (m)




Results Ash Thickness vs. Position

Deposit layers and thicknesses vs. wall position (318 min)

20x10° -
B slag
m frozen
15 + sintered T
particulate
£ 10 +
—
5 £
O —'f' i i i 4]._
0 10 20 30 40

Position y (m)




Results Ash Thickness vs. Position

Deposit layers and thicknesses vs. wall position (10 hrs)
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Results

Ash Surface Temperature vs. Position

Ash surface temperature profiles at t=70s, 1210 s, 6010 s, and at steady state
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Results

Heat Flux vs. Position

position y (m)

Wall heat flux profiles at t=70s, 1210 s, 6010 s, and at steady state
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Results

Heat Flux and Surface Temperature vs. Position

Heat flux (left axis) and ash surface temperature (right axis) as a function of time,
at position y = 31m.
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Results Temperature Distribution
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Work in Progress

Implementation of a continuous model for the effective thermal conductivity (k)

which captures the dependence on ash properties.

Investigation of Preliminary models for (k)
« Packed Beds
« Empirical data
« Conduction and radiation models

examples
Random two continuous phase model (Brailsford, Major)
based on porosity and k values of two continuous (gas and solid) phases

k, = {3p, ~Dk, +(3p, ~Dk, + [(3p, ~k, + (3, ~Dk.3* +8k k,}* |14

Laubitz model
models radiation combined with an existing conduction model
based on particle diameter, porosity, and temperature

d
Ke = 2K cong) +40T3g?p(1— p?® + p*?)

incorporation of emittance and deposition models/UDF’s within FLUENT
Obtain experimental data to further model development and for validation

Ps =1- pg




Summary %

Developed a model (UDF) to describe the behavior of a temporally-
varying ash deposit
Model coupled thermally with FLUENT through wall heat flux and
temperature
The thermal transport and changes in deposit morphology were determined
Model exercised on an industrial coal-fired boiler (with slagging conditions)
Spatial and temporal profiles obtained for

deposit thickness

(steady state thickness of 15 - 20 mm)

surface temperature

(maximum temperatures above 1700 K)

heat flux

(approximately 60% reduction in maximum heat flux)
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