

Thermodynamic Modeling of Condensed Salts and Silicates at High Temperatures

Bing Liu, Larry L. Baxter, John L. Oscarson, and Reed M. Izatt

Departments of Chemical Engineering and Chemistry & Biochemistry

Brigham Young University

Ash Deposition

• Thermal converter slagging/fouling strongly influences design and operation.

Major Inorganic Compounds in Coals

Fusion temperature of ash varies with coal

Measuring phase equilibria of ash/slags is difficult and costly over a wide range of compositions and temperatures

Thermodynamic Models

- Few ash deposits are in equilibrium, but equilibrium represents an important limiting behavior
- Thermodynamic models help describe
 - Fusion temperatures
 - Deposition rates and mechanisms
 - Operating regime

Develop a thermodynamic model to correlate/predict hightemperature phase diagrams

•Validate the model using available experimental data

Pure Component Properties Are Needed

•The melting point of the mixture may lie several hundred degrees below pure component data

•Intermediate compound properties may not have been measured or be available in a standard thermodynamic database

Extrapolation is Unreliable

The overestimated heat capacity results may lead to errors in the phase diagram expectations.

Comparison of Liquid MgCl₂ Heat Capacities

Pure Component Properties (Cont.)

• The FACTsage heat capacity equation form is used to calculate the heat capacities of pure components

$$C_{\rm p} = a + b \times 10^{-3} T + \frac{c \times 10^5}{T^2} + \frac{d}{\sqrt{T}} + e \times 10^{-6} T^2 + f \times 10^{-9} T^3$$

 Heat capacities at unstable conditions (supercooled/superheated) can be approximated using thermodynamic identities in the cases where no literature data exist

$$\Delta_{\rm tr} G = \Delta_{\rm tr} H - T \Delta_{\rm tr} S$$
$$\Delta C_{\rm P} = C_{\rm P,L} - C_{\rm P,S} = -T \left(\frac{d^2 \Delta_{\rm tr} G}{dT^2} \right) \approx 0$$

 Properties of the intermediate compounds can be optimized based on other kinds of measured thermodynamic properties (*e.g.*, phase diagram data)

Liquids: Modified Quasi-chemical Mode

 In a binary system composed of components A and B, the mixing Gibbs energy change can be accounted for by a quasi-chemical reaction:

 $(A-A) + (B-B) = 2 (A-B) \qquad \Delta g_{AB}$

 The Total Gibbs energy of the system is:

 $G = (x_{\rm A}g_{\rm A}^{\rm o} + x_{\rm B}g_{\rm B}^{\rm o}) - T\Delta S^{\rm config} + (n_{\rm AB}/2)\Delta g_{\rm AB}$

G: total Gibbs energy of the solution *T*: temperature x_i : mole fraction of the components g_i^{o} : Gibbs energy of the pure component ΔS^{config} : configurational entropy n_{AB} : number of AB pairs in the solution Δg_{AB} : nonconfigurational gibbs energy change

Modified Quasi-chemical Model (Cont.)

 The configurational entropy accounts for the random mixing contribution of the compounds/pairs in the system, and is usually expressed as a function of mole fractions of the initial compounds and a a function of pairs.

$$\Delta S^{\text{config}} = -R(x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}) - R\left(n_{\text{AA}} \ln \frac{x_{\text{AA}}}{Y_{\text{A}}^2} + n_{\text{BB}} \ln \frac{x_{\text{BB}}}{Y_{\text{B}}^2} + n_{\text{AB}} \ln \frac{x_{\text{AB}}}{2Y_{\text{A}}Y_{\text{B}}}\right)$$
$$Y_{\text{A}} = x_{\text{AA}} + \frac{x_{\text{AB}}}{2} \qquad \qquad Y_{\text{B}} = x_{\text{BB}} + \frac{x_{\text{AB}}}{2}$$

 x_i : mole fraction of component *i* in the solution n_{ij} : number of *ij* pairs in the solution Y_i : equivalent fraction of pairs with component *i* x_{ij} : mole fraction of *ij* pairs

• Δg_{AB} is the nonconfigurational Gibbs energy change due to the reaction.

$$\Delta g_{AB} = \sum_{i=0}^{n} g_{i} x_{A}^{i} \text{ or}$$

$$\Delta g_{AB} = g_{0} + \sum_{i=1}^{n} g_{i} Y_{A}^{i} + \sum_{j=1}^{n} g_{j} Y_{B}^{j} \text{ or}$$

$$\Delta g_{AB} = g_{0} + \sum_{i=1}^{n} g_{i} x_{AA}^{i} + \sum_{j=1}^{n} g_{j} x_{BB}^{j}$$

 The coefficients (g₀, g_i, g_j) of Δg_{AB} are optimized using available thermodynamic data (enthalpies, entropies, phase equilibrium data etc.)

Binary Salt System Example I

Liquid solution is in equilibrium with pure solids

T-x phase diagram of the Na_2SO_4 -NaCl system. The dashed line is calculated using the smoothed data of Dessureault *et al.*'s

Binary Salt System Example II

T-x phase diagram of the K_2CO_3 -KOH system. The dashed line is calculated using the smoothed data of Dessureault *et al*.

- Liquid solution is in equilibrium with pure solids (different crystals)
- The minimum melting point of the system is near the KOH side resulting from the relatively large absolute Gibbs energy value of K₂CO₃

•A **eutectic** or **eutectic mixture** is a mixture of two or more phases at a composition that has the lowest **melting point**.

•Agreement of the **eutectic points** (calculated using the model and literature data) shows the ability of the model to correlate phase diagrams

System (A–B)	Model $x_{\rm B}$	Literature $x_{\rm B}$	Model T_{eu} , °C	Literature T_{eu} , °C
NaCl-Na ₂ CO ₃	0.449	0.41-0.47	632.96	632-645
KCl-K ₂ CO ₃	0.358	0.35-0.38	629.69	623-636
KCl-K ₂ SO ₄	0.260	0.23-0.29	690.89	688-694
NaCl-Na ₂ SO ₄	0.481	0.45-0.48	627.80	623-634
KOH-K ₂ CO ₃	0.091	0.09-0.10	362.48	360-367

Liquid solution is in equilibrium with solid solution

Liquid-solid solution phase diagram of the K₂S-Na₂S system. • from Mäkipää and Backman

Liquid-solid solution phase diagram of the K_2CO_3 -Na₂CO₃ system.

K₂O-SiO₂ Phase Diagram

•Properties of many intermediate silicates cannot be measured and must be optimized based on data in the regions where there is no formation of these compounds.

•The equation of Gibbs energy of the $K_2Si_2O_5$ is optimized using the equilibrium $T \sim x$ data based on the following reaction:

$$K_2O(l) + 2SiO_2(l) = K_2Si_2O_5(s) \implies G_{K_2Si_2O_5(s)}(T) = u_{K_2O(l)}(x,T) + 2u_{SiO_2(l)}(x,T)$$

CaO-SiO₂ Phase Diagram

•The high melting temperature of pure CaO accounts for the high melting point in CaO-rich systems

•The thermodynamic properties (e.g., Gibbs energy and melting point values) of the intermediate compounds are obtained by optimizing the phase equilibrium data

•More experiments are needed to better correlate the phase diagrams in the intermediate compounds regions

•The intermediate compound $AI_6Si_2O_{13}$ may account for the slow decrease of the melting point with increasing SiO_2 concentrations

FeO-SiO₂ Phase Diagram

The relatively low melting point of Fe_2SiO_4 implies that the association between FeO and SiO_2 is not as strong as those between many other metallic oxides (CaO, Al_2O_3 etc.) and SiO_2

Comparison of melting points of several associated compounds in silicate systems

Component	Calculated MP (°C)	Literature MP (°C)
K_2SiO_3	977	976–977
$K_2Si_2O_5$	1046	1045-1046
$K_2Si_4O_9$	770	769-771
Na ₂ SiO ₃	1090	1090-1100
$Na_2Si_2O_5$	875	875
Na ₄ SiO ₄	1085	1085
$Na_6Si_2O_7$	1124	1124
Ca ₃ SiO ₄	-	1800-2149
Ca_2SiO_4	2133	2130-2145
CaSiO ₃	1540	1540-1544

Eutectic Points in Silicate Systems

Туре	Calculated EP		Literature EP	
	<i>T</i> (°C)	$x(SiO_2)$	$T(^{\circ}C)$	$x(SiO_2)$
K ₂ SiO ₃ -K ₂ Si ₂ O ₅	767	0.569	780-781	0.567
$K_2Si_2O_5$ - $K_2Si_4O_9$	729	0.767	743	0.764-0.766
$K_2Si_4O_9$ -SiO ₂ (Qu)	770	0.807	770	0.805
Na ₄ SiO ₄ -Na ₆ Si ₂ O ₇	1029	0.367	1002	0.361
Na ₆ Si ₂ O ₇ -Na ₂ SiO ₃	1015	0.442	1016	0.455
Na ₂ SiO ₃ -Na ₄ SiO ₄	839	0.623	841-847	0.614-0.63
$Na_6Si_8O_{19}$ -Si $O_2(Qu)$	804	0.747	794–799	0.742
Ca ₃ SiO ₅ -Ca ₂ SiO ₄	2023	0.295	2057-2060	0.273-0.30
Ca ₃ Si ₂ O ₇ -CaSiO ₃	1467	0.422	1450-1460	0.42-0.445
$CaSiO_3$ -SiO ₂ (Tr)	1441	0.615	1441-1444	0.61-0.635

Summary of Current Progress

- A modified quasi-chemical model taken from the literature has been used to correlate phase diagrams of molten salts and silicates
- The validity of the model has been tested and verified using many binary systems
- Optimal modeling parameters of many binary systems potentially related to the coal ash components have been found for use in later multicomponent modeling
- Thermodynamic properties of many pure compounds have been collected, approximated, or optimized.

References

- Allen, W.C.; R.B. Snow, J. Am. Ceram. Soc., 1955, 38, p.264.
- Aramaki, S.; R. Roy, *J. Am. Ceram.* Soc., 1962, 45, p.229.
- Bowen, N.L.; J.F. Schairer, Am. J. Sci., 1932, 24, p177.
- Davies, M. W. Ph.D. Thesis, Imperial College, London, 1955.
- Dessureault, Y.; Sangster, J.; Pelton, A. D., *J. Phy. Chem. Ref. Data* 1990, 19, (5), p.1149.
- Donald L. Bonk, NETL, U. S. Department of Energy.
- Greig, J. W., Am. J. Sci. 1927, 13, p1, p.133.
- Greig, J. W., Am. J. Sci. 1927, 14, (5), p.473.
- Hageman, V.B.M.; G.J.K. vanden Berg; H.J. Janssen; H.A.J. Oonk, Phys. Chem. Glasses, 1986, 27, p.100.
- Klug, F.J.; S. Prochazka; R.H. Doremus, *J. Am. Ceram. Soc.*, 1987, 70, p.750.
- Kracek, F. C., *J. Phy. Chem.* 1930, 34, p.1583.
- Kracek, F. C.; Bowen, N. L.; Morey, G. W., *J. Phys. Chem.* 1937, 41, p.1183.
- Reisman, A., *J. Am. Chem. Soc.* 1959, 81, p.807.
- Rolin, M.; Recapet, J. M., *Bulletin de la Societe Chimique de France* 1964, (9), p. 2104.
- Schuhmann, R.; P. Ensio, *J. Met.*, 1951, 3, p401.
- Tewhey, J.D.; P.C. Hess, Phys. Chem. Glasses, 1979, 20, p.41
- Mäkipää, M.; Backman, R., In 9th International Symposium on Cossosion in the Pulp and Paper Industry, 1998.
- Tsaplin, A. A.; Zaitsev, A. I.; Shelkova, N. E.; Mogutnov, B. M., Juelich, Reihe Energietechnik/Energy Tech. 2000, 15, p.59.
- Zaitsev, A. I.; Shelkova, N. E.; Lyakishev, N. P.; Mogutnov, B. M., *Phy. Chem. Chem. Phy.* 1999, 1(8), p.1899.

