

Advanced Chemical Analyses as Indicators for Coal Fouling and Slagging

Larry Baxter Brigham Young University Provo, UT 84602

21st Annual ACERC Conference February 28, 2007

Origins of Coal

Ash Impacts Boiler Design

High-rank Coal

Low-rank Coal

Chemical Fractionation

Inorganic Classes

Alkali Metals in Coals

Atomically Dispersed Sodium

Atomically Distributed Potassium

Inorganic Classes

Major Transformations Summary

Traditional Analyses

Major Chemical Species

Complete Species Descriptions

Percent of Inorganic Mass

Individual Species Reactions

Gypsum Typifies Sulfates

Kaolinite Forms Little Liquid

 $i \in i \cap p \in i$ at $u \in C$

Illite (Muscovite)

. • ٣

Pyrite Forms Liquid

I emperature, °C

Deposition Mechanisms

Inertial Impaction

Eddy Impaction

steam tube

Most Mass Impacts

Thermophoresis

small (< 5 µm) particles

Thermophoresis?

Condensation

Condensation

Chemical Reaction

Gases React with Deposits

Status of Chemical Fractionation

- Incorporated into (nearly) commercial software
- Analysis developed as VBA code and incorporated into Access – could easily be incorporated into Excel
- ASTM Ruggedness tests
 - Repeatability (ability of a single lab to get similar results) done
 - Reproducibility (ability of different labs to get similar results) underway – welcome volunteer labs (need about 6 more)
- Have database of about 50 coals representing most ranks, mostly bituminous and subbituminous, and mostly US fuels.

Si Tracer Errors in H₂O Step

Si Tracer Errors in AmAc Step

Si Errors in HCI Step

EB/Ke

Leachate vs Solids Analysis: H₂O

Leachate vs Solids Analysis: AmAc

Leachate vs Solids Analysis: HCI

Deposition Rates Are Modeled

- Inertial impaction
 - Important for deposit mass
 - Best quantified
- Eddy impaction
 - Generally small contributor
 - Largely empirical models
- Thermophoresis
 - Huge theoretical literature
 - Data comparisons not satisfying
- Condensation
 - Good theory, but complex for practical conditions
- Chemical reaction
 - Complex in condensed phase

Cofiring Deposition

Deposition Rates Vary Widely

Rat

- Cofiring biomass can • lead to either decrease or increase in deposition rates.
- Cofiring decreases • deposition relative to neat fuels.

Oxygen Mass Fraction Contours

2.2032e-001

o2

1.6524e-001

1.1016e-001

5.5080e-002

0.0000e+000

Cloud (Particle) Trajectories

Mechanisms Shift With Size

Deposition Rate: First SH

Sulfur Affects Chlorine Exposure

100% Imperial Wheat Straw

85% E. Kentucky 15% Wheat Straw

BL Mechanisms

Vapor Deposition

Vapor deposition flux [g/m²/h]

Radiative Properties Are Important

- Deposit surface temperature and heat flux depend strongly on thermal conductivity and emissivity.
- Between the theoretical bounds or thermal conductivity lies a large variation in performance.
- It is essential that in situ thermal conductivity data are collected.

In Situ Conductivity Data

Į

Emissivity Is Difficult

- Theoretically rigorous approaches are being attempted to describe emissivities.
- Fundamental data (optical constants) are in significant disagreement.
- New optical constants are being calculated using several approaches.

In Situ Experimental Data

Chlorine Dominates Aerosol Formation

Chlorine Controls Aerosol Amount

Chenevert

Chenevert

Mechanisms Combine

