

Coal-based, CO2-neutral Power Generation

Larry Baxter Brigham Young University Provo, UT 84602

> ACERC Conference February 27, 2007

CO₂ Sequestration Options

Source: Freund, IEA - Comparative potentials at storage costs of up to \$20/t CO_2

Source: Parson & Keith, Science 282, 1053-1054, 1998

CO₂ Release is Health Hazard

Ĩ

Aquifer Behavior Over Time

Source: A. Riaz, M. Hesse, H. Tchelepi, Stanford University, 2005

Monitoring Capabilities

Sleipner Data: Source: S. Benson, GCEP Workshop, Beijing 2006

Project Essentials

- Awarded (not yet signed) contract from GCEP
 - Largest GCEP project to date only coal-related project to date
 - Involves Stanford (Mitchell, Edwards), University of Utah (several), and BYU (many)
 - Research and provide conceptual design for supercritical (nominally 250 atm, 2000 °C) coal conversion system for coal slurry
- 3-year Project Includes
 - LCA
 - Reactivity
 - Fate of Inorganics
 - Thermodynamics
 - Materials
 - Reactor Design

Proposed Solution

Increasing salinity and/or changing temperature with distance/time

Supercritical Properties

	Atmospheric	Pressure (0.1	Supercritical Pressure (25 MPa)	
	MPa)			
	Liquid/Sat	Gas	Fluid (liquid)	Fluid
	Vapor	(374/2000	(25 °C)	(374/2000 °C)
	(25 °C)	°C)		
Density (kg/m ³)	997/0.0231	0.335/0.0953	1008	513/23.6
Comp. Factor	2.13e-5/0.999	0.998/1.000	0.182	0.163/1.01
Enthalpy (kJ/kg)	105/2547	3225/7377	127	1836/7371
C _p (kJ/kg K)	4.14/1.91	2.05/2.93	4.12	12.8/2.96
CO ₂ Solubility (mass %)	0.157/NA	miscible	21	miscible
NaCl Solubility (mass %)	27	2.7e-8/0	27	45/0
Viscosity (µPa s)	890/9.87	23.4/78.1	886	59.1/77.6
Thermal Cond. (W/m K)	0.607/0.0186	0.0517/0.292	0.618	0.415/0.255
Oxygen Diffus. (cm ² /s)	2.1e-5/3.86	0.403/14.9		8.1e-4/0.012
Dielectric Constant	78.4/1.00	1.00/1.00	79.3	10.49/1.05
Isothermal Comp. (1/bar)	4.53e-5/31.6	1.00/1.00	4.26e-5	0.00292/0.00395

CO₂ Solubility

Process Diagram

Significant Process Features

Advantages

- Inherently stable CO₂ storage
- No CO₂ compression (coal slurry and liquid O₂ pumps), reduces parasitic compression loss by 3 orders of magnitude
- Potentially higher steam temperatures (no pressure gradient across high-temperature heat exchangers)
- Heat recovery from aquifer
- No gaseous emissions of any type

Disadvantages

- Unknown and severe operating regime (materials, reactivities, fluid mechanics)
- Heat/efficiency loss from reinjection, especially if at supercritical conditions
- Potentially large water volumes

One Reactor Design

Rankine-cycle water/steam

Status

- Preliminary LCA indicates possible substantial energy and CO₂ advantages compared to IGCC or oxyfuel w/ sequestration, depending primarily on aquifer temperature, water/fuel ratio, and steam temperature.
- Materials and reactor design seen as primary barriers
- Capital costs highly variable, depending on materials and reactor design decisions
- Several detailed scenarios in focus

Acknowledgements

- GCEP and sponsors (ExxonMobil, Schlumberger, Toyota, GE)
- Reggie Mitchell and Chris Edwards (Stanford)
- Ron Pugmire, Phil Smith, Adel Sarofim, Mike Modell (UoU)
- Tom Fletcher, Dale Tree, John Oscarson, Reed Izatt, Hugh Hales (BYU)
- Many students

