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Introduction: NO,, Formation

 Thermal NO, — slowest forming,
requires high T

 Prompt NO, — quicker forming but
slower than other combustion
reactions

* Fuel-NO, — like prompt-NO but N
originates from fuel

— Most of NO, from coal combustion is
fuel-NO, (80%)
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OEC and Oxy-fuel NO, Comparison

Expected Common Features (relative to air):

» Higher O, concentration in fuel-rich region ”
leads to:
— Higher volatiles yield (lower char-N) \
— Shorter devolatilization period
— Attached/Stable flame

e Longer residence times in fuel-rich zone:
— More NO, can be reduced

e Optimization is required
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Introduction:
OEC and Oxy-fuel NO, Comparison

Differences:

« OEC has (relative to Oxy-fuel): ﬁ'
— High sensitivity to O, injection location
— Large amounts of N2 (possibility of thermal and
prompt NO,) ‘
e Only Oxy-fuel has:
— Flue gas recycle (including NO,)
— Replacement of almost all N, with CO,




Opjectives

o Understand the mechanism(s) by
which NO, emissions are lowered In
oxy-fuel combustion

— leads to ability to optimize the process

e Measure Iindicators of corrosion

tendency for oxy-fuel combustion
relative to air
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Preliminary Corrosion Results

g #6 (Normal ) Magnification — 268X

Illmois #6 (Oxytuel) Magmfication — 200X
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—-30.02% 02, 0.737 kg/hr Ill # 6,

0.378 kg/hr CH4
—=-25.28% 02, 0.737 kg/hr Il # 6,

0.374 kg/hr CH4
——Air, 0.734 kg/hr Ill # 6,

0.373 kg/hr CH4
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equilibrium NO, Trends
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guilipriurn NO,, Trends

Equilibrium at T =1500 K, 1 atm, @ =1, lllinois 6
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[S: Staged

Total Mass Flow Rates (kg/hr) Stoichiometry

Oxidizer
to Primary Sec. Oxidizer Oxidizer
Burnout Stage Stage Mass % Molar %
Coal CH, Air O, CO, Section R R )
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1
—=-—30.47% 02, 0.697 kg/hr lll # 6,
0.345 kg/hr CH4

= 25.47% 02, 0.744 kg/hr lll # 6,
0.37 kg/hr CH4

—e—Air, 0.741 kg/hr 11l # 6,
0.372 kg/hr CH4
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—e—Air, 0.741 kg/hr Il # 6,
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surmmary

o Without staging, Oxy-fuel and Air

combustion produce NO, In large
amounts

» With staging, Oxy-fuel produces lower

o}

— BUT: Recycle ratio must be optimized
 Affects peak NO, formation
* Affects residence time
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* Devolatilization:
— ~1cm resolution gas sampling near

burner WINDOW BECOMES
e O CLOSELY SPACED
2 SAMPLING PORTS

* NO, i ————

« HCN, NH; CO
— Doping of reactants (CO,) with NO,,
—Vary @, O,/CO, ratios, depth of staging
— OEC?
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Planned Experiments
(Subject to change)

e Corrosion:

— Staged combustion of 3 coals

e [llinois 6 (High CI, S, K, Med Na)

 PRB (High Na, Low CI, S)

 Pittsburgh 8 (High S, K, Med CI, Low Na)
— Mineral analysis of fly ash

— SEM analysis of simulated superheater
deposits

™
i
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Questions and Suggestions
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