A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-fuel Combustion

> Dale R. Tree, Larry Baxter Andrew Mackrory, Shrinivas Lokare

> > ACERC Conference February 27-28, 2007

Introduction: NO_x Formation

- Thermal NO_x slowest forming, requires high T
- Prompt NO_x quicker forming but slower than other combustion reactions
- Fuel-NO_x like prompt-NO but N originates from fuel

- Most of NO_x from coal combustion is fuel-NO_x (80%)

Introduction: pc Oxy-fuel Combustion

Introduction: pc O₂ Enhanced Combustion (OEC)

O₂ Volume %: 21.8 to 29% (in a fuel-rich stage only) (US Patent # 6,957,955 Kobayashi, et al., 2005)

Oxygen Enhanced Combustion

Oxygen Enhanced Combustion

OEC and Oxy-fuel NO_x Comparison

Expected Common Features (relative to air):

- Higher O₂ concentration in fuel-rich region leads to:
 - Higher volatiles yield (lower char-N)
 - Shorter devolatilization period
 - Attached/Stable flame
- Longer residence times in fuel-rich zone:
 - More NO_X can be reduced
- Optimization is required

Introduction: OEC and Oxy-fuel NO_x Comparison

Differences:

- OEC has (relative to Oxy-fuel):
 - High sensitivity to O_2 injection location
 - Large amounts of N2 (possibility of thermal and prompt NO_x)
- Only Oxy-fuel has:
 - Flue gas recycle (including NO_x)
 - Replacement of almost all N₂ with CO₂
 - Increased concentrations of corrosive species

Objectives

 Understand the mechanism(s) by which NO_x emissions are lowered in oxy-fuel combustion

leads to ability to optimize the process

 Measure indicators of corrosion tendency for oxy-fuel combustion relative to air

Equipment Setup

Preliminary Corrosion Results

Illinois #6 (Normal) Magnification - 500X

Illinois #6 (Oxyfuel) Magnification - 400X

Illinois #6 (Normal) Magnification - 268X

Illinois #6 (Oxyfuel) Magnification - 200X

NO_x Results: Unstaged

12

NO_x Results: Unstaged

13

NO_x Results: Unstaged

14

Equilibrium NO_x Trends

Equilibrium NO_x Trends

NO_x Results: Staged

Total Mass Flow Rates (kg/hr)					Stoichiometry				
Coal	CH ₄	Air	0 ₂	CO ₂	Oxidizer to Burnout Section	Primary Stage SR	Sec. Stage SR	Oxidizer Mass % O ₂	Oxidizer Molar % O ₂
0.741	0.372	16.8	-	-	28%	0.75	1.05	23.3%	21%
0.744	0.370	-	3.886	11.37	28%	0.75	1.04	25.5%	32%
0.697	0.345	-	3.562	8.127	28%	0.73	1.02	30.5%	38%

NO_x Results: Staged

NO_x Results: Staged

Summary

- Without staging, Oxy-fuel and Air combustion produce NO_x in large amounts
- With staging, Oxy-fuel produces lower NO_x
 - BUT: Recycle ratio must be optimized
 - Affects peak NO_x formation
 - Affects residence time

Planned Experiments (Subject to change)

- Devolatilization:
 - ~1cm resolution gas sampling near

burner

- O₂
- NO_x
- HCN, NH_{3,} CO

WINDOW BECOMES CLOSELY SPACED SAMPLING PORTS

- Doping of reactants (CO_2) with NO_x
- Vary Φ , O₂/CO₂ ratios, depth of staging OEC?

Planned Experiments (Subject to change)

- Corrosion:
 - Staged combustion of 3 coals
 - Illinois 6 (High Cl, S, K, Med Na)
 - PRB (High Na, Low Cl, S)
 - Pittsburgh 8 (High S, K, Med Cl, Low Na)
 - Mineral analysis of fly ash
 - SEM analysis of simulated superheater deposits

Acknowledgements

 We would like to thank the DOE, UCR program for the funding to do this work

 Air-Liquide for funding and technical support

Questions and Suggestions