

Biomass Fly Ash in Concrete II

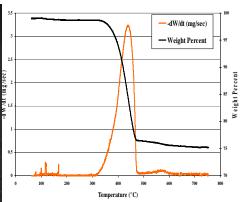
Shuangzhen Wang, Sharon Bragonje, Justin Tullis and Larry Baxter

Objective:

This poster determines the strength build-up and quantitative kinetics of pozzolanic reaction between biomass /coal ash with Ca(OH)₂. The strength of biomass ash samples is **2-3 times** stronger than coal ash ones and even comparable to those of pure cement ones (2-in cube); The Ca(OH)₂ consumption rate was determined by TGA and the data imply a diffusion controlled mechanism.

Reaction Mechanisms

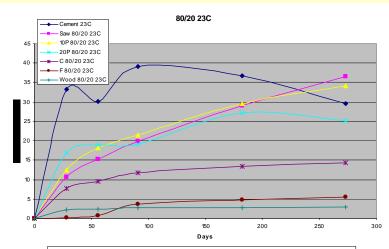
Cement Hydration


 $2Ca_3SiO_5 + 7H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 4H_2O + 3Ca(OH)_2$

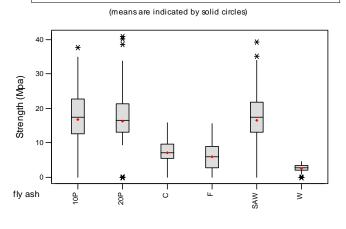
Pozzolanic Reaction (fly ash with Ca(OH)₂)

 $3Ca(OH)_2 + 2SiO_2 + H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 4H_2O$

TGA Analysis of Ca(OH)₂ Vacuum sealed in Mason Jar

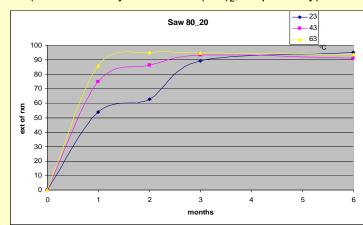


Experimental Setup


•			
Item		Description	
Fly ash	(6)	C, F, Wood, SAW, 10P and 20P	
Water//(fly ash + Ca(OH) ₂)	(mass)	0.5	
Sand /(fly ash + Ca(OH) ₂)	(mass)	2	
Fly ash / Ca(OH) ₂	(mass)	80 / 20, 70 / 30, 60 / 40	
Temperatures	(3)	23°C, 43°C, 63°C	
Testing Dates	(6)	1, 2, 3, 6, 9 and 12 months after mixing	
Replicates		2	

Keep samples from CO₂ attack.

Strength Build-up



Statistical Analysis of Strength Build up by Fly Ash

Quantitative Kinetics

(first order to fly ash and Ca(OH)2, respectively)

$$\frac{d\alpha_{Ca(OH)_2}}{dt} = k(1 - \alpha_{Ca(OH)_2})(1 - \alpha_{ash})$$

	K⁰ (month ⁻¹⁾	Ea/R (K)	b	R ²
Class F	199453	3639	1.857	0.95
Class C	38.71	986.2	2.28	0.94
Wood	5.05	191.1	2.99	0.93
10P	2408	2316	1.74	0.94
20P	2535	2391	1.86	0.93
SAW	245700	3688	1.71	0.96

Bottoms and tops of boxes represent the 95% confident intervals

b is the stoichiometric parameter, one gram of fly ash combines with b grams of Ca(OH)₂