Condensed-phase Equilibrium for Ash-forming Fuels

Bing Liu, John L. Oscarson, Larry L. Baxter, and Reed M. Izatt

ACERC, Departments of Chemical Engineering and Chemistry & Biochemistry, Brigham Young University, Provo, Utah

Background

 Serious ash deposition/slagging dominates design and operation of thermal processors with ash-forming fuels.

 Phase equilibria and viscosity play a key role in deposit properties.

•Fusion temperature of ash/slags varies with composition.

•Thermodynamic models calculate slag melting points and compositions.

temperature phase diagrams.

In a binary system composed of

quasi-chemical reaction:

(A-A) + (B-B) = 2 (A-B)

Modified Quasi-chemical Model

components A and B. the mixing Gibbs

energy change can be accounted for by a

Slagging in entrained flow gasifiers

BBBB

B B B B

B B B B

AB BA

AB AB

BA BA

Silicate Systems

Results

75

70

600

NaCl-Na2SO4

1800 2600 Allen & Snow Davies 1900 1600 240 Greig Tewhey and Hess Schuhmann & Ensid Tsaplin et al 2 Liquid Bowen & Schaire 1400 2200 1700 ov of al Hageman et al 1200 Cr 1200 2000 1500 1800 1400 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 0.65 0.75 0.85 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.45 0.55 0.95 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 Mole Fraction SiO Mole Fraction SiO Mole Fraction SiO 2 Mole Fraction SiO Na₂O-SiO₂ K₂O-SiO₂ CaO-SiO₂ FeO-SiO₂

Melting Points (MP) of Intermediate Compounds and Eutectic Points (EP) in Silicate Systems

KOH-K₂CO

Component	Calculated MP (*C)	Literature MP (°C)	Туре	Calcula	ated EP	Literature E	Р
K ₂ SiO ₃	977	976-977		$T\left(^{\circ}\mathrm{C}\right)$	$x(SiO_2)$	<i>T</i> (°C)	$x(SiO_2)$
K ₂ Si ₂ O ₅	1046	1045-1046	K2SiO3-K2Si2O5	767	0.569	780-781	0.567
K2Si4O9	770	769-771	K2Si2O5-K2Si4O9	729	0.767	743	0.764-0.766
Na ₂ SiO ₃	1090	1090-1100	K2Si4O9-SiO2(Qu)	770	0.807	770	0.805
Na ₂ Si ₂ O ₅	875	875	Na ₄ SiO ₄ -Na ₆ Si ₂ O ₇	1029	0.367	1002	0.361
Na ₄ SiO ₄	1085	1085	Na ₆ Si ₂ O ₇ -Na ₂ SiO ₃ Na ₂ SiO ₂ -Na ₂ SiO ₃	1015	0.442	1016 841-847	0.455
Na ₆ Si ₂ O ₇	1124	1124	Na ₄ Si ₂ O ₁₀ -SiO ₂ (Ou)	804	0.747	794-799	0.742
Ca ₃ SiO ₄		1800-2149	Ca ₃ SiO ₅ -Ca ₂ SiO ₄	2023	0.295	2057-2060	0.273-0.30
Ca2SiO4	2133	2130-2145	Ca3Si2O7-CaSiO3	1467	0.422	1450-1460	0.42-0.445
CaSiO ₃	1540	1540-1544	CaSiO ₃ -SiO ₂ (Tr)	1441	0.615	1441-1444	0.61-0.635

Many binary salt and silicate phase diagrams have been modeled and are available from the ash deposition group at Brigham Young University: NaCl-Na₂CO₃, KCl-K₂CO₃, NaCl-Na₂SO₄, KCl-K₂SO₄, K₂CO₃-KOH, KCl-MgCl₂, Na₂O-SiO₂, CaO-SiO₂, Al₂O₃-SiO₂, FeO-SiO₂, Na₂S-K₂S, etc.

Conclusions

 A modified quasi-chemical model taken from the literature has been used to correlate phase diagrams of inorganic salts and silicates.

- •The model has been validated using several binary systems.
- •Thermodynamic properties of many pure compounds have been collected, approximated, or optimized.

•The results of the model in correlating low-order phases can be used in extrapolations to multi-component systems.

Future Work

•Expand the model validation to ternary and higher-order systems

•Collect and develop a database for the pure component properties and binary interaction parameters that can be used for multicomponent systems.

•Combine the phase equilibrium results with viscosity models to predict viscosities of slags in multi-component phases.

The Total Gibbs energy of the system is: Na Na

$G = (x_{\rm A} g_{\rm A}^{\circ} + x_{\rm B} g_{\rm B}^{\circ}) - T\Delta S^{\rm config} + (n_{\rm AB}/2)\Delta g$	3 AB
---	------

G: total Gibbs energy of the solution

T: temperature

Objectives

- x_i : mole fraction of the components g_i° : Gibbs energy of the pure component
- g_i^{s} . Globs energy of the pure co ΔS^{config} : configurational entropy

 n_{AB} : number of AB pairs in the solution

 Δg_{AB} : nonconfigurational gibbs energy change

The $\triangle g_{AB}$ term accounts for the Gibbs energy change due to the quasi-chemical reaction and is usually expressed as a polynomial function of x_i or mole fractions of A-A and/or B-B pairs. The coefficients of the polynomial function result from optimizing phase equilibrium and/or heat of mixing data.

Develop a thermodynamic model to correlate/predict high-

Validate the model using available experimental data

 Δg_{AB}