Soot Formation and Oxidation

JoAnn S. Lighty Nathan B. Orton Chris J. Merrill University of Utah Department of Chemical Engineering Institute for Combustion and Energy Studies

NSTIN

Objectives

Experimental Systems

- Scanning Mobility Particle Sizer (SMPS)
 - Long-DMA
 - Nano-DMA
- Dilution System
 - Series of eductors
- Thermophoretic Sampling System
 - Rapid insertion device
 - TEM grid analysis
- Thermocouple Particle Densitometry
- Burner Systems
 - Inverse Diffusion Flame
 - Two-Stage Burner

SMPS

ENERGY

INSTIN

SMPS Nano Results

LINSTINUTE & ENERGY (

Dilution System

NSTIN

ENER

Importance of Dilution on PSD

NSTIN

NER

Thermophoretic Sampling

Thermophoretic Sampling provides TEM samples which allow for determination of soot morphology.

Soot Formation

INSTINU

ENER

Soot Formation Inverse Diffusion Flame (IDF)

NSTINU

PSD from IDF

Peak at about 50nm for a premixed ethylene flame.

Peak at 9 nm for an ethylene inverse diffusion flame. IDF provides much younger and smaller soot.

PSD from IDF

Above the flame, there appears to be a bimodal distribution. The primary particle size is still near 10 nm and the coagulation peak is about 90 nm.

ENER

NSTINU

TEM from IDF

The majority of the soot particles are small, young soot as viewed by the small, spherical particles.

A few larger soot agglomerates can also be seen.

Temperature and Soot Volume Fraction IDF Flame

Temperature Profile, Ethylene IDF

NSTINU ENER

Soot Oxidation

INSTINU

ENER

Oxidation Kinetics

OH Oxidation

-Neoh Hydroxyl Oxidation Formula

$$r = 1.2731 x 10^{-2} \Gamma_{OH} P_{OH} T^{-1/2}$$

 Γ_{OH} -OH collision efficiency

O₂ oxidation

-Nagle and Strickland-Constable Formula (NSC)

$$r = 120 \frac{k_a P_{O_2}}{1 + k_z P_{O_2}} x + k_b P_{O_2} (1 - x) \left[\frac{kg}{m^2 s}\right]$$

Oxidation – Fuel Rich vs. Fuel Lean

-Diameter decreased from 48.7 to 29 nanometers

-Particle No. DECREASED from 12,100,000 to 11,200,000 (correcting for counting efficiency)

-80% mass burnout

NSTINU

NER

-Diameter decreased from: 43.7 to 26.7 nanometers

-Particle No. INCREASED from 10,500,000 to 21,600,000

-57% mass burnout

OH Rate Temperature Dependence

Fuel Rich Oxidation as a Function of Temperature H2/CO Oxidation Flame, Phi=1.2

-Both particle diameter and particle number decrease with increasing temperature

-Burnout: 95-99%

-Rates were calculated from this data and were also modeled for these conditions

NSTNU

Measured OH Oxidation Rates

-The measured rates are slightly higher than those predicted by Neoh but have the same trend

NSTIN

NER

-Average OH Collision efficiency was 0.27 for these runs. Neoh reported values between 0.13 and 0.28.

TEM from Two-Stage Burner

Soot from 1st Burner

Soot consists of agglomerates made up of primary particles

Size: about 100 nm

NLL

Soot from 2nd Burner

Large soot agglomerates are not visible

Size: about 20 nm

Conclusions

- Developed sampling methodologies for a range of particle sizes from 3 nm to over 100 nm
- Developed two burner systems for the study of soot formation and oxidation
- Soot generated in the Inverse Diffusion Flame appears to be "young soot" based on particle size
- Distributions above the burner show a coagulation mode
- Fuel Rich oxidation rates were measured and were consistent with the Neoh OH Oxidation Model
- Fragmentation of soot under fuel-lean conditions was evident from an increase in total number concentration
- TEM pictures from the two-stage burner show large soot agglomerates from the first flame and much smaller spherical oxidized particles from the second flame

Future Work

- Perform additional SMPS and TEM measurements in the IDF flame
 - Locations and fuel dilution
- Perform Photoacoustic measurements to explore the optical properties of soot from the IDF
- Develop improved kinetic rate constants for OH oxidation and incorporate with NSC model

