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Objectives
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Experimental Systems

Scanning Mobility Particle Sizer (SMPS)
— Long-DMA

— Nano-DMA

Dilution System

— Series of eductors

Thermophoretic Sampling System

— Rapid insertion device

— TEM grid analysis

Thermocouple Particle Densitometry
Burner Systems

— Inverse Diffusion Flame

— Two-Stage Burner U
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Nano Results
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Dilution System
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Importance of Dilution on PSD
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Thermophoretic Sampling
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Soot Formation
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Soot Formation
Inverse Diffusion Flame (IDF)

Normal Diffusion Inverse Diffusion
Flame: Flame:

Soot passes Soot is driven
through the flame away from the
and heats, flame into cool
carbonizes, and fuel/N,: no
oxidizes. carbonization or
oxidation.
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PSD from IDF
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PSD from IDF
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Above the flame, there appears to be a
bimodal distribution. The primary particle
size is still near 10 nm and the coagulation U
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TEM from IDF
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Temperature and Soot Volume Fraction
IDF Flame

Temperature Profile, Ethylene IDF
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Soot Oxidation
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Soot Oxidation
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Oxidation Kinetics

OH Oxidation

-Neoh Hydroxyl Oxidation Formula

r=1.2731x10°T, P, T "7

L'on -OH collision efficiency

O, oxidation

-Nagle and Strickland-Constable Formula (NSC)

kP
=120 % x+ka02(1—x)[kg}

1+k,P, m’s
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< Oxidation — Fuel Rich vs. Fuel Lean

-Diameter decreased from 48.7
to 29 nanometers

-Particle No. DECREASED from
12,100,000 to 11,200,000
(correcting for counting
efficiency)

-80% mass burnout

-Diameter decreased from: 43.7 to
26.7 nanometers

-Particle No. INCREASED from
10,500,000 to 21,600,000
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Fuel Rich Oxidation as a Function of Temperature
H2/CO Oxidation Flame, Phi=1.2
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-Both particle diameter and particle number decrease
with increasing temperature

-Burnout: 95-99%

-Rates were calculated from this data and were also U
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modeled for these conditions
UNIVERSITY

OF UTAH




Measured OH Oxidation Rates
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-The measured rates are slightly higher than those
predicted by Neoh but have the same trend

-Average OH Collision efficiency was 0.27 for these U
THE

runs. Neoh reported values between 0.13 and 0.28. UNIVERSITY
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TEM from Two-Stage Burner

»Soot from 1st Burner

»Soot consists of
agglomerates made up of
primary particles

»Size: about 100 nm

»Soot from 2nd Burner

»Large soot agglomerates
are not visible

»Size: about 20 nm
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Conclusions

Developed sampling methodologies for a range of particle sizes
from 3 nm to over 100 nm

Developed two burner systems for the study of soot formation
and oxidation

Soot generated in the Inverse Diffusion Flame appears to be
“young soot” based on particle size

Distributions above the burner show a coagulation mode

Fuel Rich oxidation rates were measured and were consistent
with the Neoh OH Oxidation Model

Fragmentation of soot under fuel-lean conditions was evident
from an increase in total number concentration

TEM pictures from the two-stage burner show large soot
agglomerates from the first flame and much smaller spherical
oxidized particles from the second flame
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Future Work

e Perform additional SMPS and TEM
measurements in the IDF flame

— Locations and fuel dilution

e Perform Photoacoustic measurements to
explore the optical properties of soot from
the IDF

 Develop improved Kkinetic rate constants for
OH oxidation and incorporate with NSC
model
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