Comprehensive Time Dependent Black Liquor Single Droplet Experiments and Predictions

Elvin IP Andrew Mackrory Larry Baxter Dale R. Tree

Brigham Young University 2005 ACERC Conference Provo, UT

Introduction

Black Liquor is a byproduct of the paper production process.

Black Liquor consists of primarily lignin from wood and chemicals (NaOH, NaS, Na₂CO₃) which are used to remove the lignin in wood from the pulp.

Black liquor contains approximately ½ the energy content of the wood which is being converted to paper.

The annual energy content of black liquor produced in the United States is 9×10^{17} J or 1% of the total energy production.

Fundamental information on black liquor combustion and gasification is required to produce more efficient recovery boilers or new gasifier designs which will allow a greater fraction of the energy in black liquor to be recovered and potentially be exported.

Objectives

For a single, burning, black liquor droplet, obtain simultaneous measurements of

- Mass loss
- Size and shape
- Temperature (internal and surface)
- Major Gas Species Loss

Compare the experimental results with a 1-D burning droplet model

My presentation will focus on the surface temperature measurements

Method – Droplet Reactor

* The three viewports are in three orthogonal direction

Method – Measurements

Mass: Balance

<u>Interior Temperature</u>: Thermocouple, 250 µm wires

Surface Temperature: 2-Color Thermometry

Diameter: Images, half of widest and narrowest lengths

Product Gas: Molecular Beam Mass Spectrometer (MBMS)

Method – Reactor Conditions

- 1-5 mm droplets
- 5 liquors, mainly 70 % solids contents
- Furnace gases:
 - Air and nitrogen
- Furnace temperatures:
 - 700, 800, and 900 °C
- Data acquisition rates:
 - Cameras: 30 and 60 fps
 - Internal temperature: 100 Hz
 - Surface temperature: 30 fps
 - Mass: 18 Hz
- 3-4 repeats

Method – Liquors Used

	Softwood		Softwood/Hardwood		
	А	В	C	D	E
С	35.6	36.0	39.3	38.6	37.5
Η	3.34	3.48	3.64	3.52	3.63
S	4.06	3.49	2.69	3.47	3.92
Na	18.8	22.0	18.4	n.a.	n.a.
K	1.50	1.26	2.20	n.a.	n.a.
C1	0.10	0.55	0.22	n.a.	n.a.
Ο	36.6	33.3	33.5	n.a.	n.a.

O – by difference; n.a. – not available

Example - Black Liquor In Air

BYU

Method – Digital Cameras

Digital Camera collects light on an array of detectors. A 4x4 array is shown below

A mask is placed over the detectors allowing either red, green or blue light through to the detector as shown, known as the Bayer pattern

Each individual detector is called a pixie, a group of four detectors consisting of one red, two green, and one blue is called a pixel

With a little luck and a lot of perseverance you can find a camera manufacturer that sells software that allows the recording of the absolute charge (voltage) collected on each individual pixie

Method – Radiation Thermometry

The total intensity and ratio of intensity at different colors can be used to measure temperature

Spectral Emission = $\varepsilon_{\lambda} E_{b,\lambda}$

Camera's Response = $\overline{\alpha_{\lambda}}$

Adapted from Incropera and DeWitt

$$P_{\lambda} = S_{\lambda} \int_{\lambda_{1}}^{\lambda_{2}} \varepsilon_{\lambda} E(T)_{\lambda} \alpha_{\lambda} d\lambda$$

Where:

 $E_{\lambda} = \text{Black Body Emissive Power}$ $\varepsilon_{\lambda} = \text{spectral emissivity}$ $\alpha_{\lambda} = \text{spectral response of the detector}$ $S_{\lambda} = \text{Sensitivity Volts produced per unit of}$ energy converted by each pixel

Results – Surface Temperature

Liquor D Droplet has been drying

Images start at 750 ms

Onset of burning is not uniform across the droplet

Bottom half of droplet burns faster, hotter. ISP particle is seen leaving the droplet

Bottom half of the droplet remains the hottest

Large temperature variations are observed from one side of the droplet to the other 1700 K vs below 1000 K

Initially the particle swells but eventually, the diameter decreases, and the temperature becomes more uniform.

Results – Surface Temperature

Gas Temperature: 800 C Liquor D Droplet has been drying Images start at 2.2 s

Gas emitted produces sooting flame. The sooting flame is a lower temperature than the char

Results Gas Composition Effects on Swelling

- Swelling reaches maximum and stabilizes in nitrogen
- Droplets shrink due to oxidation in air
- Low temperatures swell more than high tempeartures

Results - Internal Temperature

- Moisture vaporizes near boiling point of water
- High furnace temperature increases reaction rate
- Droplet temperature reaches a maximum in air
- Increased furnace temperature increases the maximum droplet internal temperature

Results - Simultaneous Data

BYU

Droplet Burning Model

- I-D Transient
- Simultaneous
 - Drying: internal and external moisture vaporization
 - Devolatilization: wood pyrolysis kinetics
 - Char oxidation/gasification: surface and pores
- Droplet
 - 1.5 mm in diameter, spherical
 - 70% solids content, 35% ash
- Assumptions
 - Constant volume and shape
 - No volatile combustion
 - No inorganic reactions
- Grid and time step
 - Grid independence test
 - 0.001ms time step

Model – Data Comparison- In Nitrogen

- Data within the two extremes of predictions
- Measured temperature overshoot oxidation
- Predicted temperatures slow down endothermic

Model – Data Comparison- In Air

- Devolatilization changed to be exothermic
- Surface ash/carbon ratio consideration
- No flame, no swelling models were added

Summary and Conclusions

- Simultaneous measurement of mass, size, internal and surface temperature and major gas species have been obtained for 1-5 mm black liquor droplets burning at 700, 800 and 900 °C.
- A 1-D model heat, mass, and species transfer including devolitilization and char oxidation has been completed and compared to the data.
- Droplets swell 2.8 3.8 times in nitrogen and 2.4 3.5 times during oxidation and more at lower temperature than at higher temperature
- Droplet internal temperatures follow trends expected and predicted by the model.
- Surface temperatures can be as much as 300 C higher than interior temperature and gradients on the surface can differ by as much as 300 C

Summary and Conclusions

- Combustion begins at various locations around the droplet.
- A flame forms around the droplet which is influenced by buoyancy and convective gas velocities. This flame produces soot radiating heat to the droplet and surroundings.
- The up-wind side of the droplet/particle burns the hottest due to oxygen availability.
- Holes or cavities appear on the surface of the char indicating areas where oxygen is temporarily unable to reach the surface.
- Temperature profiles are not one-dimensional in the radial direction.
- Modeling results suggest devolitilization reactions are exothermic
- Including ash fraction in the carbon to reduce reactive carbon surface area has a significant impact in predicted particle surface temperature