

Skigh Lewis, Larry Baxter, Justin Peatross Brigham Young University ACERC Conference February 17, 2005

Overview

 Project background and objectives Experimental methods Particle levitation model Drag force model Optical trapping mechanism Particle reactivity Conclusions

• • Background

- Optical manipulation of *transparent* particles reported by Ashkin in 1970
 - Optical tweezers used in aerosol and biological research
- Milliken oil drop experiment
 - Suspended small drops of oil between electrical plates to measure the charge of an electron

Background

- Electrodynamic levitation
 - Charged particles trapped in an electrodynamic chamber
 - Particles lose their charge at elevated temperatures
- Optical levitation of *opaque* particles reported in the early 1980's
 - Not necessary to charge particles
 - To date, no mechanism has been established/accepted

Project Objectives

• Describe optical trapping mechanism

- Study combustion of single particles through entire combustion process
 - Model changes in the following variables:
 - Particle size
 - Surface temperature
 - Mass
 - Ambient pressure and gas composition

 Characterize reactivity of black liquor, coal, and other potential fuels

Experimental Methods

Coherent Verdi V10 Nd:YVO₄ cw, 532 nm

- Frequency-doubled beam
- Variable power output up to 10.5 watts
- Ar⁺, Nd:YAG, and Nd:YVO₄ laser beams successfully levitate particles

Experimental Methods

- 9-cm focal length lens focuses the beam
- A needle is coated with particles and passed through the beam near the focal point
- Enclosure inhibits rapid changes in air flow that otherwise convect particles out of the beam

Experimental Methods

- Beams oriented in any direction successfully levitate particles
 - Vertical beams propagating upward are the most effective
- Experiments have been performed at ambient pressures as well as under vacuum
 - Cannot trap below ~1 torr

Trapped Particles

 Black liquor particles trapped at 2 watts

Trapped Particles

- Trapped black liquor particles at 2 watts of laser power
 - All particles shown are optically trapped
- Left and middle pictures are different views of the same case; the right picture is a separate case

Particle Levitation Model

Energy Balance

- An energy balance provides estimates of particle surface temperature
 - Assumptions:
 - The only energy source is the incident laser light
 - The particles are inert
- Equates the heat from the laser light to the heat lost through convection and radiation

$$P_L \iint_{A_{p,s}} S_L dA = A_{p,s} h(T_p - T_\infty) + A_{p,s} \varepsilon \sigma(T_p^4 - T_\infty^4)$$

Results of Energy Balance

Force Balance

• Force balance on particle includes 6 forces:

Drag Photon Momentum Thermophoresis Buoyancy Gravity

- Photon momentum
 - Each photon carries momentum equal to h/λ

$$F_{mom} = \varepsilon \cdot \frac{P_L}{c} \cdot \frac{A_{p.cs}}{A_{beam}}$$

- Photophoresis
 - Force due to heating from incident laser light
- Thermophoresis
 - Force due to a temperature gradient in the gas, i.e. hot to cold
- Buoyancy is negligible
 - More than four orders of magnitude smaller than the drag force

Force Balance

Induced convective drag

- Particle heats up due to incident laser light
- Heating induces a convective flow around the particle
- This flow generates a natural convective drag force
- Drag forces predicted with Fluent

Drag Force Model

- O Used Fluent[™] and Gambit[™] to predict the drag forces and to generate grids
- Modeled 5-200 µm particles at temperatures from 400-1700 K
 - Particles modeled as isothermal spheres
- Photophoretic, thermophoretic, and light momentum force calculated separately

Density Contours

Velocity Contours

Drag Force Predictions

Power = 2 W, S.G. = 1.65

Analysis

Power = 5 W, S.G. = 1.65

Conclusion/Application

- Combination of drag, gravity, and other forces equilibrate, trapping the particle
- Depending on the laser power and particle density, we can trap particles up to ~50 μm
- We are able to suspend various types of particles under arbitrary conditions
 - Technique works under a range of pressures and ambient gas composition

Conclusion/Application

- Using diagnostic techniques we will be able to continuously measure particle temperature, emissivity, size, and shape
- How can we use this information?
 - This will allow determination of particle reactivity as a function of time
 - Particle temperature
 - Reaction enthalpy

Acknowledgments

- DOE Office of Energy Efficiency and Renewable Energy for funding
- o Dr. Larry Baxter
- Cody Bliss and John Painter under the direction of Dr. Justin Peatross
- o Dr. Brent Webb for help with Fluent[™] and Gambit[™] applications
- Chelise Van De Graaff, Oscar Medina