CFD Modeling Of Entrained Flow Gasifiers

Mike Bockelie

Martin Denison, Hong Shim, Connie Senior and Adel Sarofim

Reaction Engineering International

ACERC Annual Conference February 18-19, 2005, Provo, Utah

DOE Vision 21 Program Cost Shared Agreement DE-FC26-00FNT41047

DOE Techline - http://www.netl.doe.gov/publications/press/2000/tl_vis21sel2.html

Entrained Flow Gasifier Model

- Model Development
 - CFD + Process models
 - Allows modification of
 - Process conditions, burner characteristics
 - Fuel type, slurry composition
 - gross geometry
 - Generic Configurations:
 - downflow / upflow
 - 1 stage / 2 stage
 - based on public information
 - Define Parameters with DOE
 - Improved physical models
 - reaction kinetics
 - high pressure and gasification
 - slag, ash, soot, tar
 - air toxics (metals, PM2.5)
- Collaboration
 - N. Holt (EPRI)
 - T.Wall,.. (Black Coal CCSD, Australia)
 - K.Hein (IVD, U. of Stuttgart)

Challenges / Opportunities....

- RAM = <u>R</u>eliability, <u>A</u>vailability & <u>M</u>aintainability
- Carbon Conversion & Syngas Quality
 - Fuel Switching
 - Coal, Petcoke, Wastes, Oil, Biomass, Dirt, Blends
 - Fuel Feed System
 - Dry (N2, CO2); Wet (H2O); Pre-heat; Grind
 - Oxidant: Air vs O2
 - System Modifications / Scale Up
 - Injectors (location, quantity, orientation, spray)
 - Volume (L/D ratio)
 - System pressure
- Slag and Ash Management
 - Viscosity, composition, flux mat'l
 - Carbon content: slag vs flyash
- Refractory Wear
 - Heat extraction
- Transient Operation
 - start-up / shutdown / switching

See Gasification Technologies

- Stiegel, Clayton and Wimer [2001]
- Holt et al [2001], [Holt, 2004]
- Dogan et al [2002]
- Mudd et al [2003]

See DOE Gasification Tech. Report

4

• Clayton, Stiegel, and Wimer

See Clearwater Confernce

• Dogan et al [2002], [2003]

Gasifier – Flow Sheet / Process Model

- fast running model to asses operating conditions
 - 1 & 2 Stage designs
- mass & energy balance
 - particle burnout + equilibrium chemistry
 - heat transfer
- slag flow indicator
- Includes impacts of:
 - Fuel type, Unburned carbon, recycled char, incomplete burnout
 - Oxidant conditions
 - Wet vs Dry feed
 - Fuel particle size

Effect of Operating Conditions on Cold Gas Efficiency

Gasifier - CFD Model

- 1 & 2 stage gasifier designs
 - Based on dominant commercial systems
- provides details on
 - gas flow field
 - temperature, velocity, species
 - wall conditions:
 - temperature, heat flux
 - critical viscosity, slag flow
 - carbon conversion, cold gas efficiency
 - unburned carbon in slag and flyash
 - generated syngas
 - species, temperature, particle loading,...

evaluate impact on

carbon conversion, slag and ash properties, refractory

due to:

- fuel change or co-firing:
 - coal / char-recycle / petcoke / waste / biomass
- oxidant: oxygen concentration, pre-heat
- feed: wet vs dry, solids loading, pre-heat

CFD Model

- Computer model represents
 - Gasifier geometry
 - Operating conditions
 - Gasification processes

- Accuracy depends on
 - Input accuracy
 - Numerics
 - Representation of physics & chemistry

Flowing Slag Model

- Model accounts for:
 - Wall refractory properties
 - Back side cooling
 - Fire side flow field + heat transfer
 - Particle deposition on wall
 - Local Deposition Rate
 - Fuel ash properties
 - Composition (ash, carbon)
 - Burning on wall
- Slag model computes
 - Slag viscosity
 - Tcv = critical viscosity
 - ash composition
 - Slag surface temperature
 - Liquid & frozen slag layer thickness
 - Heat transfer through wall

[Dogan et al, GTC2002]

 T_{s}

Coolant

Based on work by [Benyon], [CCSD], [Senior], [Seggiani]

For model details see

- Pittsburgh Coal Conference 2002

Flowing Slag Model

Test case:

- 1 stage, upflow Prenflo Gasifier at Puertollano, Spain IGCC plant
- 2600 tpd, dry feed, opposed fired
- water jacket to cool refractory

- Seggiani Benyon - REI

PREKIN ->

kinetics pre-processor for solid fuel oxidation/gasification

Inputs:

devolatilization: Two-step & CPD

- pore structure: Power law & random pore
- intrinsic rates: Power law & Langmuir-Hinshelwood (CO inhibition)
- thermal annealing & ash inhibition

Single Stage – Down Flow

• Vision 21 Firing Conditions

- Pressure = 32 atm.
- 3000 tpd Illinois #6
 - H2O 11%, Ash 10%
- Slurry: 74% solids (wt.)
- Oxidant
 - 95% O2, 5% N2
 - O2:C (molar) = 0.46
 - Inlet Stoichiometry ~ 0.51

D = 2.2m

Gas and Particle Flow Field

Gas Composition at Elevations

Fuel Injector Study

• Overheating ~ reduces injector life = a limiting item for IGCC

Example: Two Stage – Up Flow

Gas and Particle Flow Field

 γ

Gasifier - CFD Model - transient

RECOM Services / IVD

Gas Temperature

Difficulty of Obtaining Data on Gasification Conditions

Ruprecht et al., Fuel (1988)

Reactor temperature	(°C)	C _M (%)
O/C-ratio	(-)	
C-conversion	(%)	
Dry gas production	$(m^3 h^{-1})$	
Dry gas composition	(vol %)	
CO ₂		
CO		
H ₂		
N ₂		
H ₂ S		
COS		
CO/H ₂ -ratio	(-)	
water content of the wet gas	$(v_{01}/_{0})$	
Spec. O ₂ -consumption	$(m^{2}(-))$	
She surges production	(m m)	
Cold gas efficiency	(m t) (%)	
Spec steam production	(1/0) (++-1)	
spee. steam production	((()	

т(°С) Екд (%)

Figure 5 Relationship between cold gas efficiency, gasifier temperature and slurry concentration

Acknowledgements

DOE NETL (COR=Bill Rogers, DE-FC26-00FNT41047)

<u>REI</u>

Dave Swensen (Software Lead), Martin Denison (Modeling Lead) Zumao Chen, Temi Linjewile, David Lignell, Connie Senior, Adel Sarofim, REI Technical Staff

- Develop component models, framework,

<u>And</u>

Neville Holt (EPRI) Gasifier System Configurations & Validation Terry Wall, Peter Benyon, David Harris, John Kent and others (CCSD, Australia) Coal Gasification Data and Mineral Matter Sub-models Klaus Hein, Bene Risio (U. Stuttgart/IVD, RECOM) Transient gasifier simulations, gasification in the EU **Chris Johnson** UU Scientific Computing and Imaging Group (Visual Influence) SCIRun Support/Enhancement, PSE Design Mark Bryden, Doug McCorkle et al (Iowa State U. - Virtual Reality Application Center) Virtual Engineering for Power Plant Simulation Ed Rubin, Mike Berkenpas et al (Carnegie Mellon U.) **IFCM** Robert James, Randy Gemmen (DOE-NETL) SOFC models AspenTech