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Introduction
• More cofiring boilers are used in power plants
• Biomass particle shape and size

• Irregular shapes: typically flake-like and cylinder-like (aspect 
ratios 2-15)

• Larger size (1~6 mm)
• Biomass particle surface area

• Surface area/volume essential to heat, mass, and 
momentum transfer

• Sphere is extreme case (lowest surface area to volume ratio 
of all shapes)

• Comprehensive particle model needed for biomass 
combustion, which may not be simply approximated 
by isothermal spheres 



Objectives
• Establish a biomass combustion database 

for particles with different shapes and sizes
• Collecting experimental data for particles with varying 

shapes and sizes: mass loss, particle volume, 
surface area, shape, and surface temperature as 
functions of residence time.

• Develop a comprehensive biomass particle 
combustion model 
• This model should be capable of simulating 

combustion behaviors of biomass particles with any 
shape and size.



Samples - sawdust

flake-like cylinder-like

near-spherical



Samples - poplar



Methods - entrained flow reactor

cooling water out

quench nitrogen

A - entrain flow reactor        B - preheater                C - syringe feeder 
D - feeding probe                   E - collection probe     F - 1st cyclone separator   
G - 2nd cyclone separator    H - filter                         I - vacuum
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•0.43m high

•50mm in diameter

•Electrically heated
up to 1600 K

•Feeding rate as low 
•as 0.7 gm/hr



Methods–particle reactor & imaging system



Method –shape reconstruction



Method – shape reconstruction 
• Image edge detection – walking algorithm
• Image alignment and surface points interpolation – IDW
• Errors for both Volume and surface area are < 10%
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Reconstructed 3D 
sawdust particle shape



Method – temperature measurement
•Thermocouples and cameras were used to measure particle 
temperature 
•Temperature measurement and calculation by color-bands method 
will be discussed by Dr. Tree in detail



Method- temperature mapping



Model Development
• Physical model

heat
volatiles

vapor

oxygen

biomass, moisture, carbon



Model Development
• Drying Model

• Liquid phase (free water, bound water) diffusion in the particle
• Internal and external evaporation
• Vapor phase diffusion and convection
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Model Development
• Pyrolysis model
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Model Development
• Char oxidation and gasification model 

• C+ ½ O2 → CO                (6)
• C + CO2 → 2 CO (7)
• C + H2O → H2 + CO (8)
• H2+ ½ O2 → H2O (9)
• CO + ½ O2 → CO2 (10)
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Model Development
• Energy balance and momentum balance
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Equations solved by control volume method



Results and Discussions
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• Pyrolysis Mass Loss History –sawdust with various shapes



Results and Discussions
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•Pyrolysis conversion time comparison



Results and Discussions
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Results and Discussions
•Pyrolysis  (d=11.5 mm near spherical poplar)
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Results and Discussions
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•Combustion  (near spherical poplar in air)



Results and Discussions
•Pyrolysis conversion time comparison
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Conclusions
• A biomass particle combustion model has been developed for 

fuels have irregular shapes

• Particle shape and size strongly affect conversion time during 
pyrolysis, consistent with model results

• Near spherical biomass particle was found to lose mass most 
slowly during pyrolysis, also consistent with theory

• Shape effects impact particle reactions in substantial ways when
particles are large (> 300 µm equivalent diameter)

• Irregular particle shape can be reconstructed using three images

• Particle surface temperature can be calculated by the color-band 
method and mapped to the 3D particle model
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