

Black Liquor Gasification: Development and Commercialization Update

Kevin Whitty

Institute for Combustion and Energy Studies (ICES) The University of Utah

ACERC Annual Conference 17-18 February 2005 Provo, Utah

Outline

- Introduction
- History of black liquor recovery technology
- Black liquor gasification technology today
- BLG research in Utah
- Conclusions

NLL

Outline

Introduction

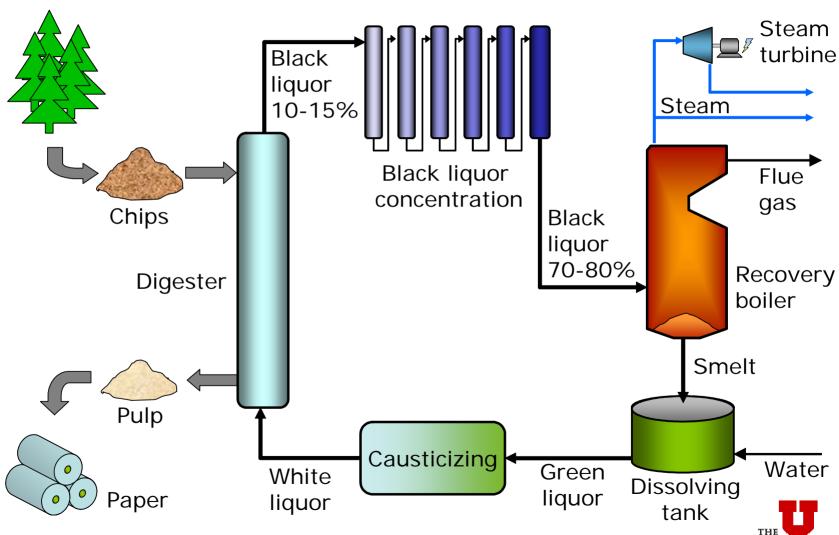
- Pulp and paper industry
- The pulp mill
- Black liquor
- History of black liquor recovery technology
- Black liquor gasification technology today
- BLG research in Utah
- Conclusions

NSTINU

ENER

Pulp and Paper Industry Statistics

Approximate values, 2003


	<u>U.S.</u>	<u>World</u>
Paper production (10 ⁶ ton/y)	100	340
Paper production (per capita, kg/y)	344	54
Chemical pulp mills	123	450
Chemical pulp production (10 ⁶ ton/y)	57	167
Black liquor production (million tons ds/y)	80	200
Recovery boilers	250	700
Biomass-based fuel consumption (GW $_{th}$)	55	192
On-site fossil fuel consumption (GW_{th})	30	94
Electricity production* (GW _{el})	7.7	24.2
Utility grid power consumption (GW _{el})	6.0	19.0

* Typically consumed on-site

Pulp Mill Chemical Cycle

UNIVERSITY

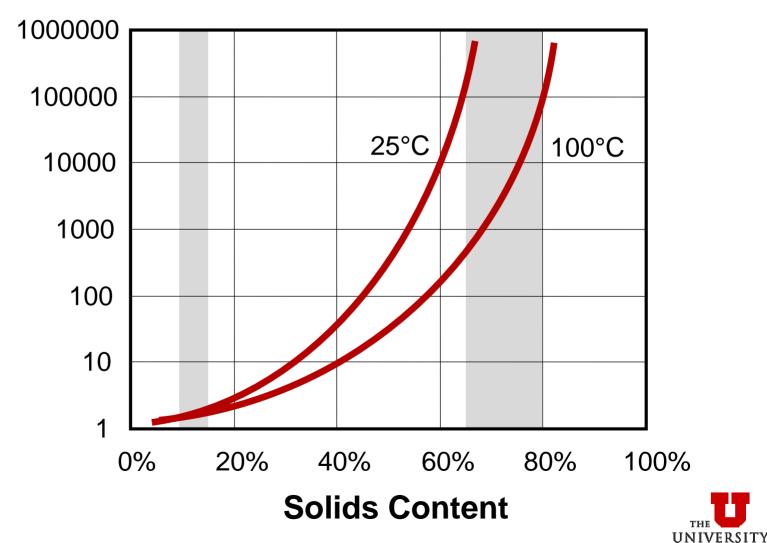
OF UTAH

Black Liquor

Approximate Composition	<u>Composition (moisture-free)</u>	
1/3 Water	Carbon	34 %
1/3 Organics	Hydrogen	3 %
1/3 Inorganics	Oxygen	34 %
	Sulfur	5 %
<u>Heating Value (dry basis)</u>	Sodium	22 %
HHV 14 MJ/kg	Potassium	1 %
HHV 6000 Btu/lb	Chlorine	0.5 %

	<u>U.S.</u>	<u>World</u>
Black liquor production (10 ⁶ tds/y)	80	200
Black liquor energy flow (GW _{th})	29	85

Black liquor is a *renewable* energy source


NSTINU

ENER

Viscosity Relative to Water

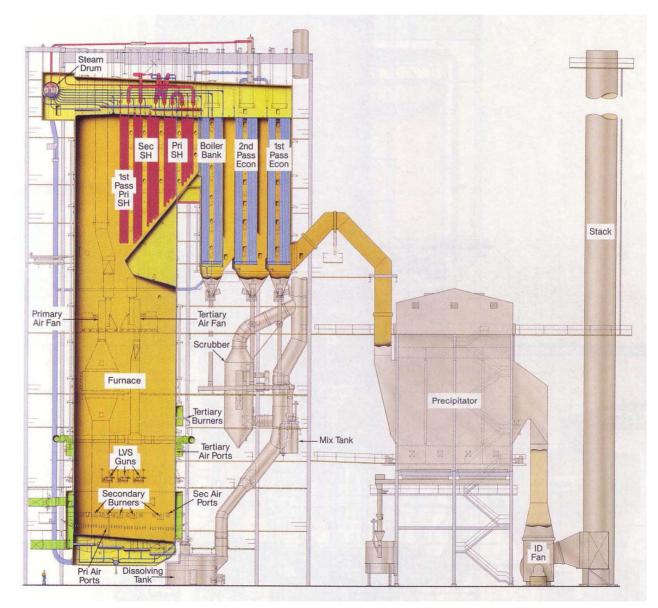
Black Liquor Viscosity

TH

OF UTAH

Outline

Introduction


History of black liquor recovery technology

- The black liquor recovery boiler
- Past attempts at development of alternative recovery systems
- Black liquor gasification technology today
- BLG research in Utah
- Conclusions

NSTNUT

THE UNIVERSITY OF UTAH

NSTINU

NER

The Recovery Boiler

- Initially developed in 1930s (Tomlinson)
- Dual purposes
 - Recover energy from black liquor
 - Recover pulping chemicals
- Power production efficiency ~12%
- Single most expensive piece of equipment in a pulp mill

Shortcomings of the Recovery Boiler

- Relatively low energy efficiency
- Relatively poor environmental performance
- Challenging boiler control
- Difficult to control mill sulfur balance
- Risk for explosion

Drivers for Black Liquor Gasification

- Energy benefits
 - More than double power production
 - Shift from net power importer to exporter
 - Potential for production of liquid fuels
- Process Benefits
 - Sulfur management
 - Opens door for advanced pulping schemes
- Environmental benefits
 - Significantly lower emissions
 - Reduced pulpwood requirements
- Economic benefits
 - Higher pulp yields
 - Lower energy costs

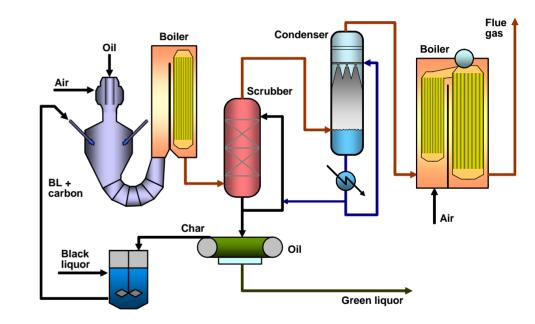
Alternative Black Liquor Recovery Technology Development Efforts

- Low temperature
 - St. Regis
 - Weyerhaeuser
 - Copeland
 - Owens-Illinois
 - ABB
 - KBR

High temperature

- NSP
- U. California
- Paprican
- Tampella
- B&W

- SCA-Billerud
- Texaco
- DARS
- VTT
- B&W
- MTCI
- Champion/Rockwell
- SKF
- Ahlstrom
- Noell
- Chemrec



SCA-Billerud Process

- 1958-1980
- Pyrolysis process
 - Burn oil for heat
 - Product gas to boiler

Low efficiency

- Thermal
- Carbon conversion
- Used as "booster"
- Five commercial installations
- Abandoned due to technical inferiority

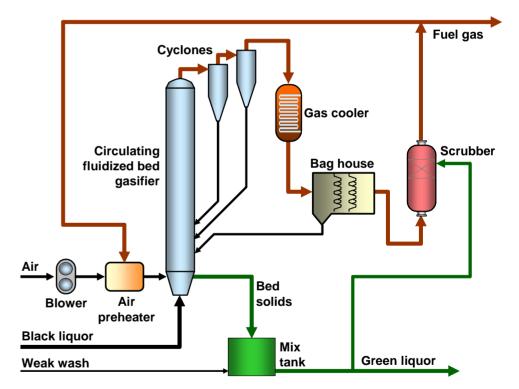
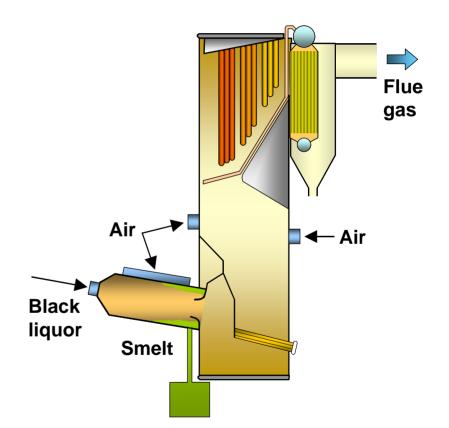


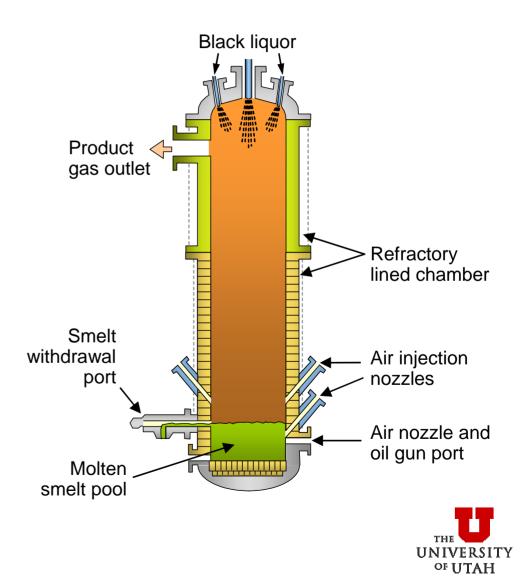
ABB CFB Gasifier

- 1989-1997
- Air or oxygen-blown
- 2.5 tds/day pilot
 - Good performance
 - Tested titanate addition
- Abandoned due to:
 - Shifting corporate priorities
 - lack of clear market in reasonable time frame



NSP Cyclone Gasifier

- "Ny Sodahus Process"
- 1973-1985
- 1100-1400°C
- Retrofit recovery boiler
- 100 tds/day pilot system
- Abandoned due to technical difficulties (corrosion) and lack of funding

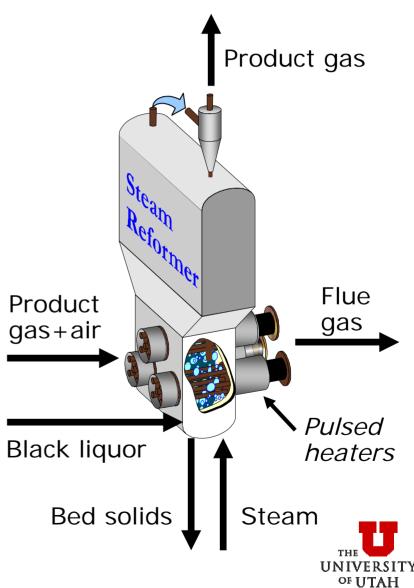


Champion-Rockwell Gasifier

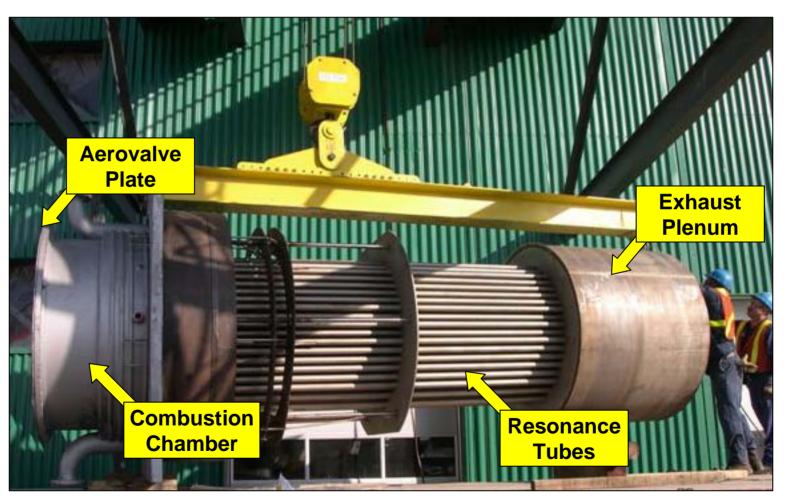
- Based on Rockwell molten salt gasifier for e.g. coal
- 1982-1988
- 6 tds/day pilot
- Design for larger, pressurized pilot
- Abandoned due to lack of funding

Outline

- Introduction
- History of black liquor recovery technology
- Black liquor gasification technology today
 - MTCI fluidized bed steam reforming
 - Chemrec entrained-flow gasification
- BLG research in Utah
- Conclusions

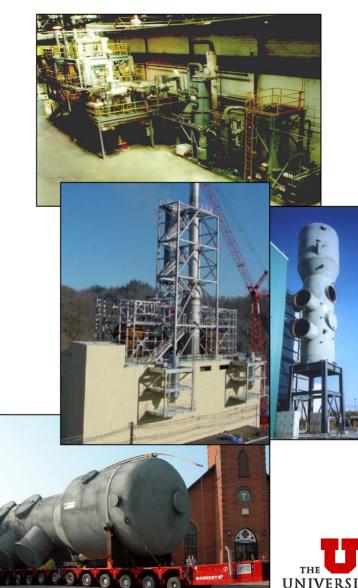

NSTINU

NER

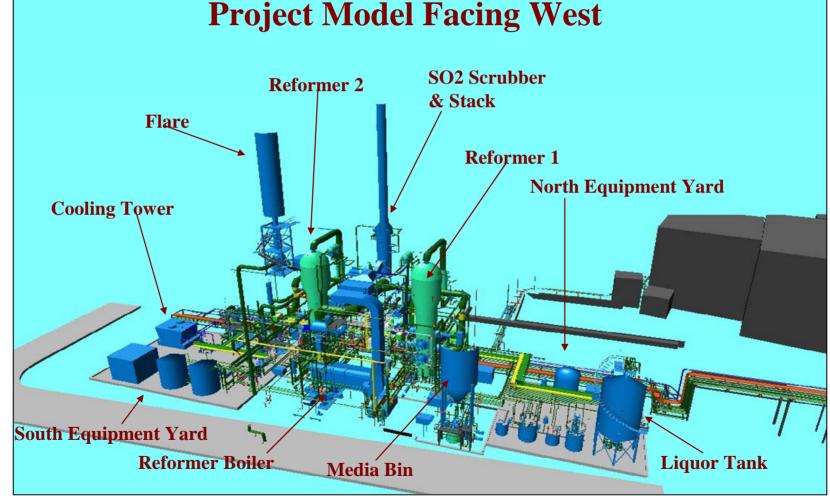

MTCI Steam Reformer

- Low temp (~600°C)
- Low pressure (~3 atm)
- Steam fluidized
- Indirectly heated by pulsed combustion heaters
- Medium HV syngas
 - 10-12 MJ/m³
 - 50-65% H₂
- Incremental capacity or replacement technology

Pulsed Combustion Heater



Development Status – MTCI


- PDU testing since 1990
- Two full-scale systems
 - Georgia-Pacific demonstration in Big Island, Virginia
 - 200 tds/d
 - Startup spring 2004
 - Norampac commercial plant in Trenton, ON
 - 100 tds/d
 - Startup June 2003
- Several other projects in discussion phase
- Yet to be proven on kraft liquor

OF UTAH

G-P Big Island Demonstration

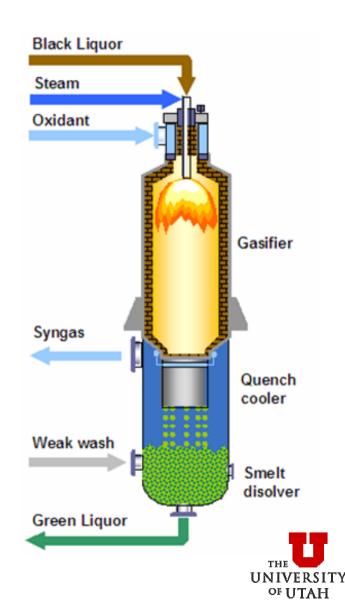
22 Picture courtesy of Georgia-Pacific Corporation

NSTN

G-P Big Island Demonstration

23 Photos courtesy of Georgia-Pacific Corporation

24 Photos courtesy of Norampac


NTTN

Chemrec Entrained-flow Gasifier

- High temp (950°C)
- "Booster" gasifier
 - Incremental capacity
 - Low pressure
 - Air-blown
 - Low Btu syngas
 - Low thermal efficiency

"BLGCC/BLGMF" gasifier

- Replacement technology
- High pressure
- Oxygen-blown
- Medium Btu syngas
- High thermal efficiency

Development Status – Chemrec

Booster System

- Pilot system early 1990s
- One commercial installation at Weyerhaeuser's New Bern, NC mill

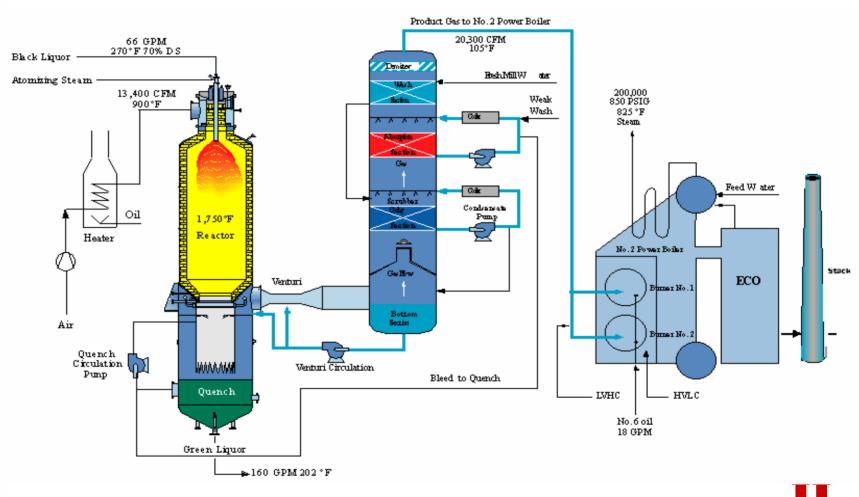
BLGCC System

- Pressurized pilot 1994-2000
 - Larger development plant startup early 2005
- Commercial demo targeted for startup 2008

BLGMF System

- Economic and technical studies in progress
- BLG + DME production demo targeted for startup 2008

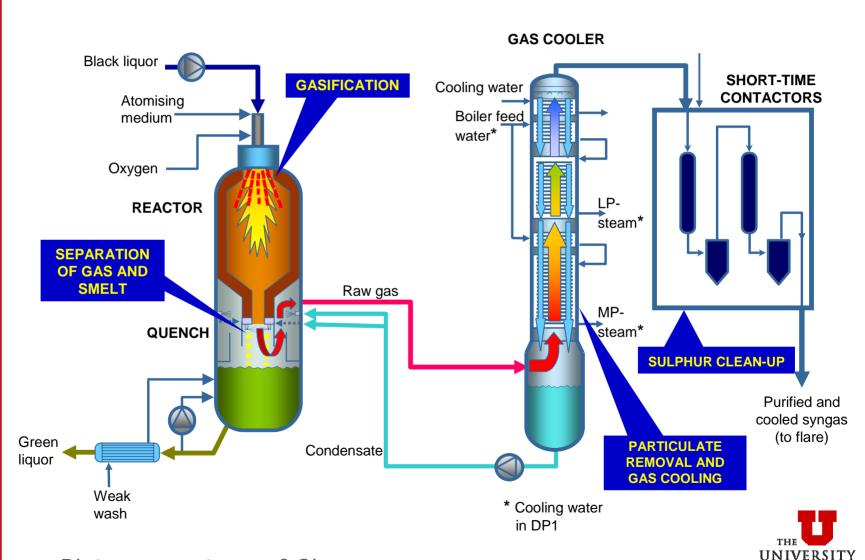
New Bern Gasifier



27 Photo courtesy of Chemrec

LINSTINU & ENERC

New Bern Booster Schematic



UNIVERSITY

OF UTAH

28 Picture courtesy of Chemrec

Chemrec "DP1" Plant Schematic

OF UTAH

29 Picture courtesy of Chemrec

Chemrec "DP1" Pilot Plant

View from outside

30 Photo courtesy of Chemrec

Site of BLGMF Demonstration

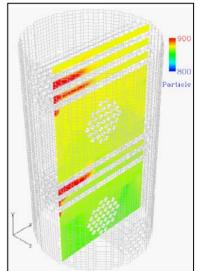
Södra Cell Mörrum Mill

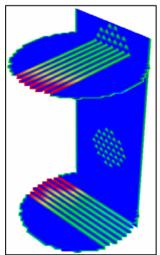
- Introduction
- History of black liquor recovery technology
- Black liquor gasification technology today
- BLG research in Utah
- Conclusions

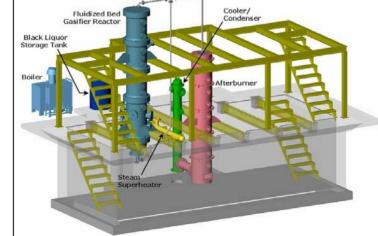
NSTINU

BLG Research in Utah

- Utah actively researching both technologies currently under development
 - University of Utah
 - Brigham Young University
 - Reaction Engineering International
- Total funding approximately \$2.7 million
 - 80% from U.S. Department of Energy
 - 20% partner cost share
 - Effective \$2.0 million federal funds






Fluidized Bed Steam Reforming Research

- Fuel conversion
- Bed performance
- Syngas characterization
- Tar destruction
- Computational modeling

Entrained-Flow Gasification Research

- Droplet formation and burner performance
 - Imaging studies
 - Droplet characterization
 - Computational modeling
- Fuel conversion
 - Droplet to smelt
 - Chemical properties
 - Physical properties
- Smelt characterization
 - Transport properties
 - Radiative properties
- Syngas characterization
 - Speciation
 - Tar characterization

- Introduction
- History of black liquor recovery technology
- Black liquor gasification technology today
- BLG research in Utah
- Conclusions

NSTIN

Conclusions

- Black liquor gasification offers significant improvements in energy efficiency and environmental performance, as well as economic benefits
- Black liquor gasification on brink of commercialization
 - Pilot-scale trials ongoing
 - Several commercial installations in place
- Utah active in black liquor gasification research

Acknowledgements

- U.S. Department of Energy
- American Forest and Paper Association (AF&PA)
- Georgia-Pacific Corporation
- Weyerhaeuser Corporation
- International Paper
- Norampac, Inc.
- MTCI / Thermochem
- Thermochem Recovery International
- Chemrec AB
- Oak Ridge National Laboratories
- University of Missouri Rolla

