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Modeling Vapor/Liquid Equilibrium of Polymer/Solvent Solutions 
During Thermal Decomposition of Removable Epoxy Foam

Removable Epoxy Foam (REF) is used in 
missiles to protect electronic components
Above 100 ºC REF begins to decompose to 
solvent-like and polymer-like products
Production of vapor raises pressure in 
missile casing until explosion is possible
Liquid phase can cause important safety 
elements to fail
Previous decomposition models included 
only solid and vapor phases, or only limited 
treatment of vapor/liquid equilibrium
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Polymer-like products
Above 100 ºC, reverse Diels-Alder 

reactions break epoxy network
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Polymer solutions exhibit non-ideal vapor/liquid equilibrium behavior
Modeling is done using an equation of state combined via mixing 
rules with an activity coefficient model suitable for polymer solutions

Equation of State (EOS)
Relates pressure to temperature and molar volume

• Good for vapor mixtures and at high temperatures and 
pressures

Peng-Robinson equation of state chosen

Two parameters, a and b, for each component
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Activity Coefficient Model (ACM)
Models the deviation of liquid mixtures from ideal 
solutions

• Better than EOS for describing behavior of liquid mixtures 
• Not good at high temperatures and pressures

ACM’s designed specifically for polymer solutions 
include Flory-Huggins, UNIFAC-FV

Numerical Solution
Solve equilibrium equation for each species, i:

Temperature and liquid mole fractions, xj, are known; 
pressure and vapor mole fractions, yj, are unknown

( ) ( )PTxxPTyy ntoj
L
iintoj

V
ii ,,ˆ,,ˆ

11 == = φφ

Mixing Rules
Mixing rules combine EOS parameters for pure 
substances into parameters for mixture
Wong-Sandler mixing rules chosen

• Combine the activity coefficient model and the EOS
• Extend benefits of activity coefficient model to high 

pressures and temperatures

Model Predictions for Vapor Pressure of 
Benzene in Polyethylene Oxide
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Background

Vapor Pressure of 90 mol% Benzene 
Polyethylene Oxide
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High Temperature Vapor/Liquid 
Equilibrium Facility
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Research Objectives
Develop a model for the non-ideal vapor/liquid equilibrium behavior of polymer solutions formed during the decomposition of Removable Epoxy Foam (REF)
Collect experimental vapor/liquid equilibrium data for representative polymer solutions at high temperatures to compare with model predictions
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Fortran Program Algorithm

- Calculate partial fugacity coefficients in liquid,     ’s

- Guess pressure, P
- Guess vapor mole fractions, yi’s, from Raoult’s law

- Calculate partial fugacity coefficients in vapor,     ’s
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- New guess for yi’s :
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