In Situ FTIR Study of Vanadia Catalyst Activity

Xiaoyu Guo, Calvin H. Bartholomew, Larry L. Baxter, William C. Hecker

Objectives

- Understand formation mechanism of sulfate species on both the support, TiO₂, and the catalyst, V_2O_5/TiO_2 .
- Understand how sulfate species affect adsorption and reaction on vanadium oxide species on the catalyst surface.
- Determine the effects of moisture, vanadia content, and time on sulfation.

Sulfation site identification

• Vanadia remains at oxidation state 5 before and after sulfation

Experimental design

- Sulfation conditions: 380 °C, 1 atm, 3000 ppm SO₂, 5% O₂ helium (balance), dry or moist gas
- Sulfation sample: TiO₂, 2% V₂O₅/TiO₂, 5% V₂O₅/TiO₂
- NO reduction acitivity test conditions: 250-290 °C, 1 atm, 700ppm NH₃ and NO, 5% O₂, helium (balance), 200,000GHSV no limitation of film and pore diffusion
- NO reduction test sample: fresh and contaminated 1% V_2O_5/TiO_2 with or without sulfation

Sulfate impact on vanadia catalyst behavior

Conclusion

Surface sulfate forms on titania sites, not vanadia sites

- Sulfation intensifies NH₃ adsorption
- Sulfation enhances NO reduction by increasing the number of Brønsted acid sites without affecting reaction mechanism
- NO, V, and S compete for the same surface sites –OH group

Future Work

- Combine FTIR study with temperature-programmed desorption and
- MS to analyze quantities of species adsorbed/desorbed.
- Investigate contaminates (Ca. K. and Na) effects on V₂O₅/TiO₂ properties: sulfation, NH₃ adsorption, activity, etc.