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Overview

Combustion of steel industry byproduct gasses 
– a case study in prompt NO formation

Kinetic analysis

Experimental results

Why does model prediction differ form data 
(kinetic analysis revisited)



NOx Formation pathways

Thermal NOx (Zeldovich)
Direct N2 oxidation
High temperature required (> 1800 K)

Prompt NOx (Fenimore)
N≡N bond scission by flame radicals
Occurs only in flame fronts

N2O Pathway
Through N2+ O + M→ N2O + M
Relevant under elevated pressures

Fuel NOx
NO formation from N-containing fuel fragments (CN, NH)
Relevant if fuel contains chemically-bound nitrogen



Case study:
NOx from steel-making by-product fuels

By-product fuels composition variability

Potential NOx formation mechanisms:
Thermal NOx
Prompt NOx
Fuel NOx
N2O path



Resulting NOx emissions variability

Predicted NO emissions for stoichiometric oxidation
in plug-flow reactor at 1200 K and 1 atm

COG BFG



NOx formation pathway analysis
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What about Fenimore’s N2+CH path?

No N2 + CH measurements were free of H 
atoms

HCN is not the product of N2 + CH
(Moskaleva and Lin, 2000)

New calculations indicate:
Lower rate for N2 + H
higher rate for N2 + H

than currently accepted values



Prompt NOx control chemistry

Initial step: N2 + H → NNH
NNH oxidation to NO is relatively fast and easy

Competing process: any H scavenging 
process

CH4 + H → CH3 + H2

C2H6 + H → C2H5 + H2

C2H5 + H → C2H4 + H2



Resulting NOx emissions variability

Predicted NO emissions for stoichiometric oxidation
in plug-flow reactor at 1200 K and 1 atm

COG BFG



Minimizing NOx emissions
from hydrogen-containing fuels



Experimental efforts

“Traditional” approach:
- preheat fuel components (CH4, C2H6, H2, CO) separately
- mix fuel components
- inject preheated fuel into N2/O2 stream

Problem:
- Mixing time 3-7 ms
- Ignition delay:2-10 ms

Solution:
- Premix cold gases, let them heat up together
(drawback: some reactions may occur during heatup)



Experimental results
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Experimental temperature profiles
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Numerical simulations revisited
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State of the art
in understanding of H evolution

H atom evolution during simplified natural gas oxidation in plug-flow reactor
- P = 1 atm; T = 1200 K; φ = 1.0 -
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Summary

Prompt NO emissions in experiments appear to 
be independent on temperature

In hydrogen-loaded fuels, accurate heatup
modeling necessary

N2 + H is the dominant pathway to prompt NO 
formation

Accurate modeling of H availability necessary 
for accurate prompt NO modeling
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