

Modeling prompt NO formation: Impact of physical constraints to chemical pathways

Zoran M. Djurisic^{a,b}, Peter Glarborg^a, Eric G. Eddings^b

^aDepartment of Chemical Engineering, Technical University of Denmark ^bDepartment of Chemical and Fuels Engineering, University of Utah

18th Annual ACERC Conference

Overview

Combustion of steel industry byproduct gasses
a case study in prompt NO formation

- Kinetic analysis
- Experimental results
- Why does model prediction differ form data (kinetic analysis revisited)

NOx Formation pathways

- □ Thermal NOx (Zeldovich)
 - Direct N₂ oxidation
 - High temperature required (> 1800 K)
- Prompt NOx (Fenimore)
 - N=N bond scission by flame radicals
 - Occurs only in flame fronts
- \square N₂O Pathway
 - Through $N_2 + O + M \rightarrow N_2O + M$
 - Relevant under elevated pressures
- Fuel NOx
 - NO formation from N-containing fuel fragments (CN, NH)
 - Relevant if fuel contains chemically-bound nitrogen

Case study: NOx from steel-making by-product fuels

By-product fuels composition variability

Resulting NOx emissions variability

Predicted NO emissions for stoichiometric oxidation in plug-flow reactor at 1200 K and 1 atm

NOx formation pathway analysis

What about Fenimore's N₂+CH path?

No N₂ + CH measurements were free of H atoms

- HCN is not the product of N₂ + CH (Moskaleva and Lin, 2000)
- New calculations indicate:
 - Lower rate for N₂ + H
 - higher rate for $N_2 + H$
 - than currently accepted values

Prompt NOx control chemistry

- □ Initial step: $N_2 + H \rightarrow NNH$ NNH oxidation to NO is relatively fast and easy
- Competing process: any H scavenging process
 - $\blacksquare CH_4 + H \rightarrow CH_3 + H_2$
 - $\bullet C_2H_6 + H \rightarrow C_2H_5 + H_2$
 - $\bullet C_2H_5 + H \rightarrow C_2H_4 + H_2$

Resulting NOx emissions variability

Predicted NO emissions for stoichiometric oxidation in plug-flow reactor at 1200 K and 1 atm

Minimizing NOx emissions from hydrogen-containing fuels

Experimental efforts

"Traditional" approach:

- preheat fuel components (CH_4 , C_2H_6 , H_2 , CO) separately
- mix fuel components
- inject preheated fuel into N_2/O_2 stream

Problem:

- Mixing time 3-7 ms
- Ignition delay:2-10 ms

Solution:

 Premix cold gases, let them heat up together (drawback: some reactions may occur during heatup)

Experimental results

Experimental temperature profiles

Numerical simulations revisited

State of the art in understanding of H evolution

H atom evolution during simplified natural gas oxidation in plug-flow reactor - P = 1 atm; T = 1200 K; ϕ = 1.0 -

OF UTAH

Summary

- Prompt NO emissions in experiments appear to be independent on temperature
- In hydrogen-loaded fuels, accurate heatup modeling necessary
- N₂ + H is the dominant pathway to prompt NO formation
- Accurate modeling of H availability necessary for accurate prompt NO modeling

Acknowledgements

- ✤ Gas Technology Institute
- ✤ U.S. Department of Energy.
- Reaction Engineering International
- ✤ University of Utah Research Fund
- CHEC Research Group, Technical University of Denmark

