OEC for NOx Control on PC Boilers

Larry Bool Sho Kobayashi KT Wu

PRAXAIR

Copyright © 2004, Praxair Technology, Inc. All rights reserved.

www.praxair.com

Discussion Points

- Introduce concept of Oxygen-enhanced combustion for fuel NOx control
- Industry- DoE University collaboration to develop O₂-enhanced NOx control technology for coal fired boilers
- > Laboratory efforts
- Commercial implementation
- Summary

Concept for Using O₂ for NOx Reduction

- > O₂ anchors coal flame
- > O₂ enhances volatile yields and makes gas phase more fuel rich
- O₂ increases first stage temperature and residence time and convert Fuel N to N₂
- O₂ reduces char yields and reduces UBC in ash

Technology Development Approach

The approach was to use a combination of theoretical and experimental work to transform the novel concept of oxygen-enhanced combustion for NOx control into a technology that is both theoretically sound and commercially practical.

Goal

Less than 0.15 lb/MMBtu NOx for bituminous coals

Technology Development History

PRAXAIR

Key Points from Laboratory Work

- Key findings from the earlier work are important for NOx results at commercial installations
 - effect of staging and O₂ replacement
 - effect of residence time
 - effect of temperature
 - effect of SR_{prime} on O₂ effectiveness
- Effect of oxygen on flame stability and LOI also important

Effect of Staging and O₂ Replacement

O₂ replacement (%)

PRAXAIR

Effect of First Stage Temperature

- Increasing flame temp in fuel rich zone reduces NOx
- O₂ increases temp w/o changing SR

Effect of Residence Time

- Staging effectiveness increases with residence time
- > O₂ most effective at short residence time
 - overcomes kinetic limitations
- Short second stage residence time leads to LOI and CO burnout problems

PRAXAIR

Effect of Second Stage Temperature

 Becomes important when comparing different boilers and determining optimum staging at a given boiler Increasing second stage temperature increases final NOx emissions

П

PRAXAIR

Effect of Primary SR

- Transport air to fuel ratio changes
 SR of fuel rich flame core
- O₂ and staging effectiveness reduced with increasing SR_{prime}
 - less local staging
 - more transport air dilutes oxygen effect

Flame Stability and LOI

- > Oxygen significantly improved flame stability at Alstom and Utah
 - reduced NOx even under fuel lean conditions
 - allowed deeper staging without blowout concern
- > Oxygen shown to improve LOI compared to air-alone staging
 - some cases LOI lower or comparable to baseline case

Making the Transition to Commercial Units

- Successful transition to commercial systems can be problematic
 - each boiler unique
 - commercial systems more complex
 - technology must be retrofit
- > Issues for air-based staging at full-scale
 - Flame stability
 - CO
 - Opacity
 - Unburned carbon in ash (LOI)
 - Waterwall wastage

PRAXAIR

Full-Scale Demonstrations

- Concept demonstrated at the City Utilities, Springfield MO, James River Unit 3
 - 44 MW front wall-fired boiler
 - bituminous and bituminous-PRB blend tested
- Demonstration at Northeast Generation Services, Holyoke, MA, Mt Tom Station
 - 125 MW (nameplate) front wall-fired boiler
 - Multiple coal types
- > Evaluate O₂ effect on boiler operation
 - NOx, LOI, opacity, flame stability, CO

Mt Tom - Limitations and Issues

- Issues at Mt Tom tend to be site specific
- » plant operating max load is 24% over nameplate capacity
 - an extreme overfiring scenario
 - shortened residence time
 - higher temperatures after the OFA ducts
 - causes unacceptable superheat steam temps
 - can cause additional NOx formation
 - control mechanisms (ie; steam temperature control) at limits

Mt Tom - Limitations and Issues (cont'd)

- Short residence time
 - even at nameplate residence time is shorter than most units
 - degrades effectiveness of staging and OEC
- > These limits have prevented deep staging at max operating load

Staging at Full Load

- Staging limited due to steam temp at full load
- NOx still decreasing at staging limit
 - did not hit limit of OEC
- Greater
 reductions
 possible if
 temps not a
 factor

NOx vs Load - Class C Bituminous Coals

- < 0.15 lb/MMBtu achieved w/O₂
- Reductions
 higher at part
 load
 - residence time increases
 - heat release rate decreases
- MA-specific CO regs (<200 ppm) limited staging
 - most units can stage deeper

NOx vs Load - Class A Bituminous Coal

- Significant reductions achieved w/O₂
- Part load
 conditions
 similar to City
 Utilities NOx
 reductions
 similar
- > CO ~ 120-170 ppm

LOI vs NOx - Class C Bituminous Coal

- LOI reduced at when NOx reduced
- With class A
 bituminous LOI
 stayed constant
 as NOx reduced

Flame Stability at Mt Tom

Best Before

Best with Oxygen

Good Oxygen

Summary - Technology

- > Oxygen enhancement demonstrated at scales ranging from pilot to 125 MW boiler
- > Typical results include
 - NOx reduction 40-60% from staged air baseline
 - LOI reduction ~30% from staged air baseline
 - Opacity decreased
 - Flame stability enhanced
- Small O₂ requirement for this application
- > Technology is commercially available

Did the Development Approach Work?

- > University contributions
 - provided a better understanding of the base technology and assurances of its effectiveness
- > Industry contributions
 - provided a better understanding of how the fundamentals outlined at small-scale can be applied to more complicated commercial systems
- Collaboration provided best opportunity for successful technology development

Acknowledgements

> Special Thanks to

- City Utilities and Northeast Generation Services
- L. Bool, H. Kobayashi, KT Wu, D. Thompson Praxair
- E. Eddings, R. Okerlund University of Utah
- J.O.L Wendt University of Arizona
- M. Cremer, D. Wang Reaction Engineering International
- N. Nsakala, C. Maney, G. Richards, R. MacWhinnie Alstom Power
- B. Lani, S. Plasynski, DoE NETL

REACTION ENGINEERING INTERNATIONAL

"This presentation was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-00NT40756. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE".