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Mercury - in the Environment, in the News

What fish should you eat?

Fish that may have high levels of
mercury:
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P Swordfish
P Shark

P Tilefish

» King mackerel
» Tuna (steak)

Fish that generally have low levels
of mercury:

P Salmon P Pollock

P Flounder » Clams

» Cod » Shrimp

» Catfish » Scallops

» Trout » Lobster USA Today
Source: Fish Facts for Good Health, !
g?ﬁg;ﬁ%ﬂn of the Washington Department 11-05'02

By Robert W. Ahrens, USA TODAY

Close... but not quite correct

Mercury vapor is important — an important distinction




Mercury Emission Inventory, U.S. Sources

Mercury Emissions from US Sources*, kg/y, rounded to nearest 500

Source Type Total Mercury

Medical Waste Incineration | 2,000
[HI.I..I'I]

Municipal Waste Combustion and Sewage Sludge 32,500
Incineration (22%)
Electric Utility Boilers 45,500

i 31%)

Non-Utility Fossil Fuel Boilers 25,500
7 i |T“|||
Non-Ferrous Metal Smelting 8,500

coal 0

[!:'l_ll]

Chlor-Alkali Sources 6,000
[__.I.I.I..I'I]

Other Point Sources | 2.000
[HI.I..I'I]

Area Sources 6,000
[__.I.I.I..I'I]

Total |48, 000

*EPA, 1998




The Issue with Mercury...

Mercury:
IS present in coal and waste fuels at 0.02 — 0.2 ppm levels
vaporizes during combustion
oxidizes only partially (important)
more escapes air pollution controls if not oxidized
elemental mercury stays in the air for ~ one year
elemental mercury generally deposits far from its source
Is transformed into methylmercury in the environment

bioaccumulates

To reduce hazard, must reduce emissions

promote oxidation and capture by existing pollution controls




Background and Objectives

 Recent studies of Hg oxidation have indicated
that homogeneous pathways can contribute

 Oxidation kinetically limited

« CI, important oxidant; HCI does not promote
extensive oxidation

 Questions remain regarding fundamental
chemistry, roles of flame stoichiometry, NOx, SO,

 Goal: expt’l and modeling study of homogeneous
Hg oxidation - examine effects of NOx, SO,, O,, C/




Experimental System

[ 11 Data Acquisition System
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Adapted from Mamani-Paco 2000



Temperature Profile

Injection port, mixing chamber
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Experimental Conditions

CH,/O./N, flame; 29 slpm total flow

Hg] 45-50 ug/m?3

Cl,] 150, 250, 500 ppm

HCI] 100, 300 ppm

SO2] 100, 400 ppm

NOJ 100, 300 ppm added (baseline = 120-150 ppm NO)

Flame equivalence ratio 0.9, 0.95, 0.98, 1.0
Experiments at each condition 3-6
Mixing chamber 1000 — 1300 K

Semtech CVAA (elemental Hg)
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Example: Effects of Cl, and O,
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Mercury Oxidation (%)
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Summary of Cl, / O, Study
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O, promotion more pronounced at lower Cl,




Effects of NO Addition on Oxidation by Cl,

Cl, concentration=250 ppmV
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Mercury Oxidation (%)

Effects of SO, Addition on Oxidation by CI,

Cl, concentration=250 ppmV
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SO, suppresses oxidation by Cl, under all conditions
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Oxidation by HCI: Importance of O,
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Hg Oxidation - HCI, NO, O,

HCL concentration=100 ppmV
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NO has no effect at low [HCI]
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Mercury Oxidation (%)

Mercury Oxidation (%)

15 |

Hg Oxidation - HCI, SO,

HCL concentration=100 ppmV
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HCL concentration=300 ppmV
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SO, has little effect on oxidation by HCI




Interpretation — Kinetic Modeling

Basis: 8-step mechanism from literature (Widmer et al., 2000;
Sliger et al., 2000; Niksa et al., 2001)

Hg + Cl + M = HgCl + M
Hg + Cl, = HgCl + CI

Hg +HCI = HgCl + H

Hg + HOCI = HgCl + OH
HgCl + Cl, = HgCl, + CI
HgCl + Cl + M = HgCl, + M
HgCl + HCI = HgClI, + H
HgCl + HOCI = HgCl, + OH

® N o gk~ wnN P




Experimental vs Model Result for Mercury
Oxidation with HCL and NO
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Experimental vs Model Result for Mercury
Oxidation with CL, and SO
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Interpretation of Effects

Promotion of CI

OH + HCI =CIl + H20

Suppression of Cl

OH + NO +M = HONO+M

OH + SO,= SO, + H
OH + SO, +M = OHSO, + M
O +S0,+M=S0,+M




Summary and Conclusions

Fuel-lean conditions (v. stoichiometric combustion) promote
Hg oxidation by either HCl or Cl,

In the presence of CI2, [SO,] of 100, 400 ppm, [NO] of 100,
300 ppm suppress Hg oxidation. SO, effects greater.

Ie_lf%%% SO, concentrations of 100 and 400 ppm had no

HCI: NO,, concentrations of 100 and 300 ppm had zero to
marginal effect

Homogeneous chemistry alone appears insufficient to
account for levels of oxidized Hg observed in coal
combustion systems, confirming role of surface reactions
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