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Introduction
• Biomass particle shape and size

• Irregular shapes (aspect ratios 2-15)
• Poorly approximated by spheres

• Biomass particle surface area
• Surface area/volume essential to heat, mass, and 

momentum transfer
• Sphere is extreme case (lowest surface area to 

volume ratio of all shapes)



Objectives
• Establish a biomass combustion database for 

particles with different shapes and sizes
Collecting experimental data at different operating 
conditions (mass loss, particle surface temperature, 
particle volume, surface area, and shape as 
functions of residence time).

• Develop a comprehensive biomass particle 
combustion model 

This model should be capable of simulating 
combustion behaviors of biomass particles with any 
shape and size. 



• Major assumptions
• Heat, mass, and momentum transfer exist in particle
• Temperature gradients same for solid and gas phase;
• Particle shrinkage neglected (for now).

• Pyrolysis kinetic scheme
Two-step model

(Bryden 2003)
(Colomba 1996)

Model Development



• Intra-particle transport equations
continuity equation species mass conversion

momentum equation solid phase species conversion

energy equation

Model Development

76521

)(1

SSSSSS

SUr
rrt

g

gg
n

ng

−+−+=

=
∂
∂

+
∂
∂ ερερ

gasinert or  , water vapgas,light  tar,

)(1)(1

=

+
∂
∂

∂
∂

=
∂
∂

+
∂
∂

i

S
r
Y

Dr
rr

UYr
rr

Y
t i

i
gi

n
nig

n
nig ρεερερ

( ) ( )[ ]
( )[ ]

∫+=

∂
∂

∂
∂

=+++
∂
∂

+

++++++
∂
∂

T

T ifi

eff
n

nVVIITTGGg
n

n

VVTTIIGGgMMCCBB

dTCpHHwhere

r
Tkr

rr
HYHYHYHYUr

rr

HYHYHYHYHHH
t

0

0
,

ˆˆ  

)(1ˆˆˆˆ1

ˆˆˆˆˆˆˆ 

ερ

ερρρρ

WM
RTP

r
PKu ρ

µ
=

∂
∂

−=     ;

 ;

 ;

    ;)(

76

53

321

VM
M

TB
C

B
B

kk
t

kk
t

kkk
t

ρρρ

ρρρ

ρρ

+−=
∂
∂

+=
∂
∂

++−=
∂
∂



Model Development
• Model solution

• Control volume method 
• Hybrid scheme
• SIMPLE algorithm
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Model Predictions
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Higher aspect ratios lead to more significant difference



• Sample preparation
1st: Sawdust separated using 
sieves 

2nd: particles aerodynamically 
classified;

3rd: different aspect ratios were 
separated by sieves

Data Collection



Data Collection

V=1.69x10-11m3  V=1.74x10-11m3 V=1.68x10-11m-3 

S=4.91x10-7m2 S=3.44x10-7m2 S=4.79x10-7m2

AR=1.3                      AR=1.6                       AR=6.1

flake-like                           prolate-like                        cylinder-like

Volume and surface area measured by a 3D particle shape 
reconstruction code developed at BYU



Data Collection
• Equipment

Current entrained flow reactor

Capabilities:

• residence time: 0.6 s

• wall temperature: up to 1650 K

• char collected by cyclone 
separator



Data Collection

• Equipment
• Optical access 
• Imaging system 
• Simultaneous 

measurement of particle 
temperature, shape, and 
size as functions of 
residence time.

• Up to 3 seconds 
residence time 

• Temperature separately 
controlled (up to 1650 K)

7 2 .0 0

1 7 .0 5

1 8 .4 0

1 8 .4 0

1 7 .7 7

New reactor under construction



Data Collection

X

Y Z Reconstructed 3D shape

Particle temperature -------- multi-color-band method



Data Collection
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Data Collection
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* kinetic data for moderate 
   temperature  were used to 
   predict the results

Experimental Data Model Predictions
•Different time scale due to fast kinetic parameters;

•Another project is going on at BYU to obtained kinetic data at high temperature



Data Collection
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* Different time scale due to fast kinetic parameters



Data Collection

Comparison of mass loss with ten times volume change
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Conclusions
• A biomass particle model has been developed;
• Near spherical biomass particle was found to lose 

mass most slowly during pyrolysis, consistent with 
theory;

• Particle shape and size affect both conversion time and 
product yield distribution during pyrolysis, also  
consistent with model;

• Shape effects impact particle reactions in substantial 
ways when particles are large (> 300 µm equivalent 
diameter).



Future Work
• Biomass particle oxidation model will be added to the 

current model;
• Particle surface temperature, volume, surface area, 

shape, and size will be measured as functions of 
residence time on the new entrained flow reactor.
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