ACERC Annual Meeting

Intermediate-sized Particles (ISP) Formation During Black Liquor Droplet Combustion

Elvin Ip, Danny Ripa, Andrew Thiriot, Warren Roberts, Dale Tree, and Larry Baxter

Chemical/Mechanical Engineering Departments Brigham Young University, Provo, Utah 84602 2/12/04

from Mimms, A.; et al.; 1989: TAPPI

Single Droplet Combustion

Ash Particle

Three kinds of particles are categorized based on particle size and formation mechanism:

- Fume: condensed material from vaporized alkali compounds (Na₂SO₄, NaCl, Na₂CO₃, etc.)
- Carryover: black liquor spray particles entrained in the flue gas (partially burned droplet or char)
- Intermediate sized particle (ISP): fragment of black liquor, char or smelt?

Questions

- How are ISP formed? (Formation mechanism)
- When are ISP formed?
- How many ISP are formed? (Significance)
- What are ISP like? (Size, shape, and morphology)
- What are the factors affecting ISP formation?

Procedures

- 1. Monitor ISP formation during single droplet combustion with cameras
- 2. Collect ISP with cyclone separators and filters and measure the mass of ISP formed
- 3. Analyze the ISP collected with SEM
- 4. Investigate the effects of liquor type, solids content, and initial droplet size on ISP formation

Experimental Method

- Suspended droplet on a thin wire or a TC
- Flat flame burner with 900-1000 °C
- Oxygen concentration range of 3-15%
- Camera recording speed of 60 frames per second
- Water-cooled, nitrogen-quenched collection probe
- Two cyclone separators with 20 µm and 5 µm cutpoints (avoiding fume particles being collected)
- Two 1.6 µm borosilicate filters

Experimental Setup

Materials and Cases

- Five liquors from different paper mills (two softwood liquors and three softwood/hardwood mixed liquors)
- Two solids contents for each liquor (50% and 70%)
- Initial droplet mass range of 5-10 mg, dry basis
- At least 3 replications for each case with different initial droplet size
- About 40-50 droplets burned per run
- Total droplets burned: >1300 with over 30 cases total

Liquor Composition

	Softwood		Softwood/Hardwood		
	A	В	С	D	E
С	35.5	32.0			
Н	3.45	3.40			
N	-	0.05			
S	5.25	5.79			
Na	18.8	22.0			
K	1.50	1.26			
Cl	0.10	0.55			
Ο	35.4	34.95			

O – by difference.

Analysis for C, D, and E in progress

1. Monitor droplet combustion

A 1.5 mm droplet, Liquor B, 50% solids, on the flat-flame burner

A 2 mm droplet, Liquor B, 50% solids, on the flat-flame burner

Devolatilization and Swelling

A liquor C droplet, 50% solids, burned in a furnace, and no ISP was observed

Devolatilization and Char Burning

A liquor B droplet, 70% solids, burned in a furnace, and no ISP was observed

Late Char Burning

A liquor C droplet, 70% solids, burned in a furnace, formed ISP during late char burning

2. Quantitative Analysis

Liquor Type and Solids Content Effects

- ISP ranges from 0-2%. (reported value 5~15% S. Kochesfahani and H. Tran)
- Liquor type strongly affects ISP formation. (softwood > soft/hardwood mixed)
- The trend is the same for 50% and 70% solids content.
- Liquors with 70% solids formed more ISP than 50% solids liquors

Initial Droplet Mass (Size) Effect

For both solids contents, ISP formation is proportional to the dry droplet mass (duration of oxidation), in the droplet size range of the investigation.

Results

- 3. SEM Analysis
- Four samples from each filter
- Accelerating voltage: 2-10 kV
- Working distance: 15-23 mm
- Probe current: 1-10 nA
- Coating: gold with carbon paint

Bigger Particles (>50 µm)

Spherical with cracking surface

Medium Size Particles (10-20 µm)

Agglomeration on surface

Small Particle (<10 µm)

Irregular Shape

Near Fume Particles (<5 µm)

Various shapes and with/without agglomeration

Fume particle (<1 µm)

Since the cut-points of the cyclones are 20 μm and 5 $\mu m,$ very little fume collected.

4. Investigation of Effects

- The data show strong effects of liquor type, solids content, and droplet size
- Liquor type could be represented by sodium/carbon (Na/C) ratio
- Elemental composition of all the liquors are required.
- A prediction model could be developed based on the initial properties of black liquor including Na/C ratio, solids content, and droplet size

Summary

- ISP formation accounts for 0-2% of dry solid mass.
- Small explosion creates small particles during drying, especially for low solids content liquors
- ISP are formed mainly during late char burning and early smelt oxidation (from video)
- Liquor type has significant effect on ISP formation, potentially due to the Na/C ratio of the liquor
- High solids content liquors form more ISP than low solids content liquors (so ISP are burning time related?)
- SEM images show that ISP have different shape, size, and surface morphology
- A model will be developed based on the effects of liquor type, solids content, and droplet size on ISP formation

Future works

- More videos for all cases in the 3-D viewport furnace
- Image ISP formation from 3-orthogonal directions simultaneously
- Collect ISP formed from the droplet burning in the furnace
- Obtain the elemental composition of all the liquors for the model

Acknowledgement

This project is sponsored by US DOE/EE Office of Industrial Technologies Sandia National Laboratories Weyerhaeuser Georgia Pacific

