Nitrogen Release From Biomass

Chunyang Wu Brad Damstedt Larry Baxter Chemical Engineering

> Dale Tree Mechanical Engineering

18th Annual ACERC Conference February 12, 2004

Introduction

- Energy Independence and Emissions (including greenhouse gas emissions) are the motivating factors for energy related policy in the US and abroad
- Biomass combustion, specifically co-firing of biomass with traditional fuels is one of the best practical solutions to achieve CO₂ reduction
- Biomass combustion produces some benefits and some drawbacks relative to coal, fuel oil, or natural gas
- Increased formation rates of NO have been observed in practice when biomass is co-fired or fired on its own compared to coal

Objective

Determine the nitrogen evolution for biomass and co-firing of biomass with coal

Hypothesis:

 Most biomass fuels release nitrogen in the form of amines in contrast to coal which tends to release nitrogen in the form of HCN

Method:

- 1. Measure NH₃ and HCN concentrations (and all major species) in a realistic reacting flow for both coal and biomass
- 2. Compare measured results with comprehensive combustion code
- 3. Use experimental data to determine residence times and temperatures for use in a plug flow reactor, full-mechanism calculation

Background

Nitrogen Content of Biomass and Coal

0.6

0.5

0.4

0.3

0.2

0.1

0

N content/energy (as recieved)(g/MJ)

Background

Experimental Setup

BYU – Burner Flow Reactor – BFR

Fuels Utah Blind Canyon Illinois #6 Straw Sawdust

<u>Measurements</u> CO_2 , CO, SO_2 – NDIR NO, NO_2 – Chemiluminescence O_2 – Paramagnetic HCN, NH_3 – FTIR

Solids – HCNS

Average Velocity - Hot Wire

Test Matrix

	Mass Fraction of Fuel / Test No.								
Fuel	1	2	3	4	5	6	7	8	9
Black Canyon	0.3	1	0.3	0.5					
Illinois #6							0.3	0.3	1
Sawdust			0.7			1		0.7	
Straw	0.7			0.5	1		0.7		

Fuel Properties (mass fractions)

	Black Canyon	Illinois #6	Sawdust	Straw
Ν	0.015	0.018	0.003	0.009
С	0.681	0.681	0.462	0.418
Н	0.053	0.048	0.058	0.054
0	0.101	0.107	0.416	0.385
S	0.005	0.015	0.001	0.001
Heating value (kJ/g)	27.8	28.5	18.0	15.9
Moisture	0.031	0.064	0.055	0.059

Results – Cold Flow, Swirl Generator

The swirl generator has been modeled to produce accurate inlet conditions for the reactor

Results – Cold Flow

Cold-flow Velocity Measurements and Modeling Note that the hot wire measurement can not determine the direction, only magnitude

Results – LDV

Average Axial Velocity

Average Tangential Velocity

Results – Chemkin

GRI_Mech 3.0

Initial Condition: $\psi_{CO} = .9$, $C_2H_2 - NH_3$, $C_2H_2 - HCN$

Results – Chemkin

Kilpinen - 97

Initial Condition: $\psi_{CO} = .9$, $C_2H_2 - NH_3$, $C_2H_2 - HCN$

HCN / HCN₀

 NH_3 / NH_{30}

Results – Chemkin

Comparison of Mechanisms

Initial Condition: $\psi_{CO} = .9$, $C_2H_2 - NH_3$, $C_2H_2 - HCN$

HCN / HCN₀

 NH_3 / NH_{30}

Results – Gas Sampling - NO

NO Contour Map For Straw

- The map was obtained on 3 different days of testing
- Peak NO values reach approximately 450 ppm
- The NO takes a considerable time to form, approximately 300 ms
- Symmetry is relatively good in the reactor
- Transient behavior and radial variations are primarily in the top two sections (80 cm)

Results – Gas Sampling, NH₃

Results – Gas Sampling, NH₃

Summary

Nitrogen is expected to evolve to NH₃ during biomass devolatilization while coal is thought to produce HCN

Existing kinetic mechanisms for NO formation appear to predict HCN to be more stable than NH₃, which seems inconsistent with full scale biomass combustion results where biomass is more likely to produce NO.

The BFR reactor is currently configured to burn biomass, coal or co-firing of biomass and coal

Initial sampling in the fuel rich region of the BFR shows significant amounts of NH₃ formation for Straw.

Species data collection for coal, biomass and co-firing are in progress.

