

2004 ACERC Conference

Use of Modeling to Solve Industrial Combustion Problems

Brad Adams

Reaction Engineering International

"Committed Individuals Solving Challenging Problems"

Why Use Combustion Modeling?

Modeling is a cost effective approach for evaluating combustion performance, operational impacts & emissions

- > Improve understanding
- > Estimate performance
- > Provide conceptual designs
- > Identify operational problems
- Cheaper than testing
- > More information than testing

Does NOT make decisions for engineers, but does help them be more informed

Key Elements to Successful Combustion Modeling

- REI has modeled ~150 combustion systems, focusing on performance and emissions
- Experience suggests successful applications involve:
 - Guiding application of modeling tools with physical insight and experience
 - Interacting with customer to ensure problem understanding and solution applicability
 - Maintaining combustion expertise in modeling tools and engineers

Problem Solving Examples

- Copper Smelting Cyclone Operation
- > NOx Reduction in Cyclone-fired Boilers
- > Chemical Weapons Incineration

Cyclone Smelter Example

- > Grass Roots Design Cyclone Copper Smelter
 - Tangentially-fed concentrate heated by oxy-fuel burners & reactions
 - Hot, partially oxidized concentrate deposits on cyclone walls, melts, and runs out bottom of cyclone
- > Operational Problems
 - Accretion buildup
 - Dust carryover
 - Surface damage
- Unacceptable Capacity and Availability

Analysis Approach

- Work with smelter personnel to understand problems and potential solutions
- > Use CFD model of cyclone to analyze:
 - Cyclone flow patterns & gas properties
 - Concentrate transport, heating & reactions
 - Concentrate deposition rates & properties
 - Oxy-fuel burner performance
 - Cyclone surface properties
 - Exit gas properties & concentrate carryover
- > Use analysis results to develop alternative cyclone designs & operating conditions
- > Evaluate potential changes with model

Accretion Build-up

SO₂ Concentration

- > Accretions controlled by
 - Deposit rheology
 - Deposition rate
- > Rheology dependent on
 - Temperature
 - Composition
- > Properties dependent on
 - Reaction rates
 - Heat transfer
 - Residence time
- Model with deposition rates and particle and gas properties

Surface Damage

Stoichiometry
fuel lean fuel rich

- Surface damage from warpage and material loss
- Caused by
 - Erosion (near throat)
 - Acid attack (condensation)
 - Local hot spots
- Model with mass flux, stoichiometry, and gas temperature

Analysis Conclusions

> Original Design Produces

- Non-uniform concentrate reactions, temperatures, and deposition patterns
- Poor burner fuel-air mixing leading to long flames
- > Recommended Changes
 - Change cyclone geometry
 - Modify concentrate carrier gas composition
 - Adjust burner properties

Flat Top

Cylindrical Top

Modification Impacts

- Oxygen addition to carrier gas improved conversion uniformity
- > Improved concentrate reactions minimized accretion buildup & stabilized matte quality
- Modified shaft geometry improved deposition patterns, reduced carryover ~5x
- Improved burner mixing reduced hot spots & enhanced concentrate reactions
- Capacity increased from 50% to 120%
- > Availability increased from days/weeks to months

Before After

Cyclone-Fired Boiler Example

Industry Expectation: Turbulent mixing makes flow & species homogeneous

- > Identify low cost NOx control strategies
- Key Processes:
 - Particle dispersion, deposition & reaction
 - Turbulent mixing & chemical reaction
 - NOx formation

Barrel Summary

Flow very stratified

- Only smallest particles burn in suspension
- Ignition front depends on fines, tertiary air & front tube deposition
- Very fuel rich regions near walls
- Barrel modifications have minimal impact on NOx

Particle Burnout & Deposition

Gas Temperature

Barrel vs. Furnace NOx

- > Barrel NOx alone insufficient to predict boiler NOx
- Need to extend barrel model to include furnace
- Significant NOx formation in furnace (~40%)
- Potential furnace NOx reduction via OFA

Overfire Air (OFA) Concept

- Staged barrels create fuel rich lower furnace
- Staging results in less NOx formation
- NOx is destroyed in fuel rich zone (dependent on time, temperature, S.R.)
- > OFA added to complete combustion after heat removal & NOx reduction

Furnace NOx Reduction

Reduction increases with staging & residence time

In-Furnace NOx Control Options

> Model is able to *predict* furnace performance

Plant NOx Reductions With OFA

> Over 90% of U.S. cyclones have installed or plan to install OFA (50-70% NOx reduction for \$2-\$3/kW)

Savings of >\$500M over other reduction technologies

Chemical Incineration Example

> Objective: develop modeling capability for chemically complex, transient combustion system

- > Assemble Team of Experts to develop chemistry models and provide oversight
- Develop a zone-based transient model to capture time dependent behavior of furnace operation
- > Use CFD model to compute
 - Detailed combustion flow field
 - Agent time-temperature history

at selected times (e.g., peak vaporization rate)

> Use detailed chemical kinetics to assess agent destruction rates

Transient Zone Model (Primary Furnace Zone)

> Results at specific time provide inputs for CFD model

CFD Model Results

CFD results based on inputs from zone model at conditions of interest Results provide details about agent destruction along streamlines

Gas Temperature

Agent Destruction

ENGINEERING

Incinerator Summary

- Team of Experts used to develop chemistry and zone model, extend CFD model, and provide reality check of results
- Series of models (zone, CFD, streamlines) provides capability to analyze chemically complex combustion system
- Results shown to predict system performance
- > Results used by operators to
 - Better understand system behavior
 - Better manage system processes
 - Evaluate alternate processing procedures

Conclusion

- Combustion modeling can be successfully utilized to solve a wide variety of industrial problems, IF
 - Application of modeling tools is guided with physical insight and experience
 - Customers are consistently involved to ensure problem understanding and solution applicability
 - A high level of expertise is maintained in combustion modeling tools and engineers

For More Information Visit

www.reaction-eng.com