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Glass furnaces: Thermal NO

¢ High pre-heated air is used in Pt
the combustion for fuel ey or ol

Technology

efficiency, results in high peak
flame temperatures (typically
around 2200 K)

¢ Thermal NO formation is very
significant above 1800 K
# Forms in local regions, where

temperature is high & radicals PUZ+0,: Puz0;
Oz,T AP: AP: 2
such as O, OH present y :

¢ To meet the environmental
regulations, glass
manufacturers are in need of
COSt'effeCtive tools to Cross-sectional view of a single port
minimize the emissions
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Combustion in a glass furnace
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Turbulent mixing & reaction-NOXx
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Da ° = mixing rate / reaction rate (Nakamura, Smart, and Van de Kamp,

J. Inst. Energy 69, 1996, 39-50)

CRSuw U

UNIVERSITY
F UTAH




* S
Time & Length scales
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Numerical simulation of combustion

¢ Direct Numerical Simulations (DNS) is not possible for
practical problems in the foreseeable future

¢+ Resolves all the scales, both spatially and temporally
¢ Large Eddy Simulations (LES) is difficult, but possible

+ Resolves problem-dependent large scales, models small
scales

¢ Reynolds Average Navier Stokes (RANS) simulations is the
feasible solution for industrial scale problems
+ Solves time-averaged governing equations
+ Needs subgrid scale models to account for the unresolved
scales

# Turbulence model: Accounts for the unresolved turbulent scales
on the mean flow transport

¢+ Mixing model: Represents mixing at subgrid scales
+ Reaction model: To simplify the complex finite-rate calculations
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Reaction model (Thermo chemistry)

+ Reduces the number of degrees of freedom associated with
the combustion chemical reactions in CFD calculations
¢ |f the state of the system (@,) has n+2 degrees of freedom
l.e., p.7.7,..7,| ,a reaction model parameterizes the state
with one/more independent tractable variables
¢ Integration of stiff PDEs can be avoided in CFD

¢ For non-premixed combustion, two widely used models

¢ Equilibrium model: Mixture fraction (f)
¢ Steady flamelets model : Mixture fraction (f) & scalar dissipation ()

# An important underlying assumption is that mixing is the rate limiting
process compared to chemical reactions (High Damkholer number)
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Reaction model (continued)
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Thermal NO chemistry

+ Extended Zeldovich
mechanism

O+N, <15 NO+N
N+0,<25NO+0
N +OH ¢35 NO+H

¢+ With the quasi-steady state
assumption for N atoms

|_ k. kLINOT
k[N, 1[0, ]

[ k ,[NO] j
1+
kz[cz] + k3[61i]

d[NO]

=2k,[O][N,] gmol /m’> — s

How should we choose the
intermediates O & OH?

+ Equilibrium

+ Partial equilibrium

+ |nstantaneous quantities
from advanced subgrid

reaction models
(nonequilibrium effects)

Turbulence-NO chemistry
effects?

+ Needs a mixing model

+ \Which NO should we
select?

&
*

®
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Nonequilibrium effects: O & OH

Mass fraction of O Mass fraction of OH
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Nonequilibrium effects: O & OH
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DNS validation of reaction models”
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¢+ DNS of spatially evolving non-premixed CO-H, jet

¢ Compared to equilibrium chemistry models, flamelets predicted
the OH concentrations reasonably

*Courtesy of James Sutherland, CRSIM UNIVERSITY
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Mixing model

¢ Accounts for mixing at unresolved (subgrid) scales

¢ Subgrid scale statistics can be represented with a prescribed
probability density function from moments of the tractable
variables computed on the mesh

+# Resolving the moments at grid level is crucial to represent the subgrid
scale mixing accurately

Equilibrium “&%
¢ = [$(P(f)df
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Complete System
Prediction/Minimization of NOx emissions 4
from glass furnaces ' o
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IFRF glass furnace

@®

Furnace Dimensions: 3.8 m long X 0.88 m wide X 0.955 m high
¢ Grid: Modeled only half the domain
¢ 420,000 hexahedral elements (after grid adaption)

Validation data® on the plane of symmetry at x=0.6, 0.9, 1.2, 1.8 &
2.4 m (along the vertical direction)

¢ Temperature, O,,C0O,,CO,CH,,NOXx
¢ Operating conditions
¢ Natural gas at 283 K o
¢ 10 % excess airat 1373 K~ _

@®

Outlet

Air inlet

% Fuel inlet

= o  xT.Nakamura, W.L. Vandecamp and J.P. Smart, “Further studies on high temperature u
SN CY gas combustion in glass furnaces”, IFRF Doc No F 90/Y/7, August 1991
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Simulation details

"« Parallel version of FLUENT 6.0 on 4 processors

¢ Flow & Turbulence: Time-averaged Navier-Stokes equations
with standard k- model & RSM for turbulence closure

¢ Combustion: Mixture fraction with equilibrium chemistry &
flamelets

¢ Flamelets: GRI Mech2.11* chemical mechanism

¢ Radiation: Discrete-ordinates with weighted-sum-of-gray-
gases model (WSGGM) for gas absorption coefficients

¢ Soot: Two-step Tesner model (soot formation & combustion)
with participation in radiation

¢ Boundary conditions:
¢ Velocity is specified at the fuel and air inlets
¢+ Wall B.C.s & glass surface are treated by specifying heat flux U
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Temperature Distribution
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Temperature validation
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validation
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NOXx calculations

¢ Turbulence: Sensitivity of turbulence model is
studied with standard k-€¢ model and RSM

¢+ Mixing: Turbulence effects on the NOx production

rates are accounted through the mixture fraction
PDF

¢ Reaction model: NOx is post-processed with the
following O & OH radical concentrations

¢ |n the case of equilibrium combustion calculations, O &
OH are taken from the partial-equilibrium approximation

¢ For flamelets combustion calculations, O & OH
concentrations are from flamelets PDF look-up tables
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NOXx validation
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NOXx validation
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Large Eddy Simulations (LES)

¢+ NS equations are filtered to
retain large scales of the flow
¢ Large scales are more

problem-dependent and
contains most of the energy

+ Needs subgrid scale models for
small scales, \_Nhlch tends tq
have more universal behavior

Resolves flow and mixing more
accurately than RANS methods

@*

E(x),

LES of a TNF workshop flame
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LES & thermal NO

Temperature & Thermal NO source
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Conclusions

¢+ Mixing: Resolving mixing is crucial in predicting the local
thermo-chemical state of the system and pollutants

¢ Resolved scale mixing: Predictions are very sensitive to the inlet
boundary profiles
¢ Subgrid scale mixing: LES resolves mixing more accurately than
RANS, thus reduces the burden on mixing model
+ Reaction Model: For NOx predictions, the intermediate
species should be chosen from realistic reaction models,
which can include the nonequilibrium effects

¢ Validation: A systematic validation strategy for NOXx
simulation in industrial furnaces needs to include validation

at pilot and bench scales.
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