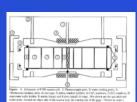
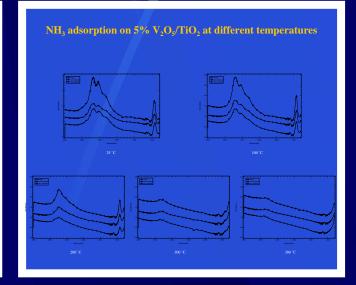

Sulfation Study of Vanadia Catalyst by In Situ FTIR

Xiaoyu Guo, Aaron Nackos, Calvin H. Bartholomew, Larry L. Baxter, William C. Hecker

Objectives


- Understand formation mechanism of sulfate species on both the support, TiO₂, and the catalyst, V₂O₅/TiO₂.
- Understand how sulfate species affect adsorption and reaction on vanadium oxide species on the catalyst surface.
- Determine the effects of moisture, vanadia content, and time on sulfation.





Experimental Design

- Sulfation gas: 3000 ppm SO₂, 5% O₂, He balance, dry or moist gas
- Temperature: 380 °C
- Pressure: 1 atm
- Duration of experiment: 6 hours preliminary test; 24 hours full test
- Sample: TiO₂, 2% V₂O₅/TiO₂, 5% V₂O₅/TiO₂
- FTIR equipment: Nicolet 730
- XPS equipment: SSX-100ESCA

Conclusion

- S=O (1375 cm⁻¹ on the FTIR spectrum) intensity decreases with increasing vanadia content on the catalyst surface
- Surface sulfate species do not form in vanadia sites but in titania sites.
- XPS analysis results are consistent with FTIR results
 - Sulfate content decreases with increasing vanadia content on V₂O₂/TiO₂ surface
 - Vanadia is in 5+ oxidation state before and after sulfation, no vanadyl (V⁴⁺) sulfate formed during sulfation.
- Water assists sulfation
- Sulfation intensify NH₃ adsorption

Future Work

- Combine FTIR study with temperature-programmed desorption and MS to analyze quantities of species adsorbed/desorbed.
- Investigate contaminates (Ca, K, and Na) effects on V₂O₅/TiO₂ properties: sulfation, NH3 adsorption, activity, etc.

