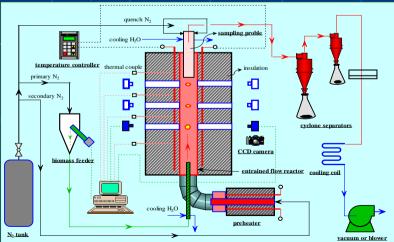


Design and Construction of an Entrained Flow Reactor

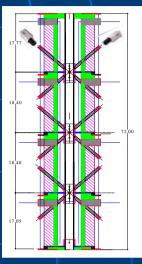
Hong Lu, Justin Scott, Bryan Ripa, Russ Farr, Larry Baxter

Chemical Engineering Department, Brigham Young University, Provo, UT

Introduction

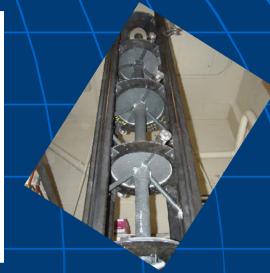

To better understand the effects of particle shape and size on biomass combustion, a high-tech entrained flow reactor is needed to collect experimental combustion data for biomass particles with different shapes and sizes.

Objectives


- Build an entrained flow reactor with the following capabilities:
 - ➤ Provide up to three seconds residence time for particles of size up to 1.5 mm;
 - ➤ Allow the temperature profile along the reactor to be separately controlled, with a maximum wall temperature of 1650 K;
 - A high efficiency preheater can heat the secondary gas temperature up to 1450K;
 - Provide optical access at three levels for particle image acquisition; at each level, optical access in three orthogonal directions is available;
 - An imaging system is mounted to take particle images and further extract particle surface temperature, volume, surface area, and size information as functions of residence time.

Progress

- The design for the whole system has been finished;
- The construction of the reactor body, temperature control system, feeding system, and collection system have been finished;
- Preheater is under construction;


Process flow diagram

Drawing of the reactor body

Finished reactor body

Internal structure of the reactor

finished feeding and collection probes

Future Work

- •Finish the construction of the preheater and mount the imaging system;
- •Test the whole system and collect experimental data for particles of different shape and size.

Acknowledgement