Experimental and Modeling Studies on Black Liquor Droplet Combustion Reactivity

Elvin Ip, Andrew Thiriot, Danny Ripa, Warren Roberts, Larry Baxter

ACERC, Chemical Engineering Department, Brigham Young University, Provo Utah

Objectives

Obtain self-consistent experimental data of black liquor droplet combustion in newly designed setup, and to develop a transient droplet model.

Background

Black liquor is a byproduct from the paper pulping process. It is concentrated and burned in a recovery boiler. Black liquor burns in droplet form. Understanding the combustion process and being able to model the process are significant.

<u>Approach</u>

A softwood/hardwood mixed liquor with about 60% solids was used for the experiment. The droplet was inserted into a newly designed 3D-viewport furnace and burned at 700, 800, and 900°C. Temperature inside the droplet and the mass loss were recorded with time. Cameras recorded the shape and size.

Equipment

The current setup: a preheater, the 3D viewport furnace, and the balance with the data logger

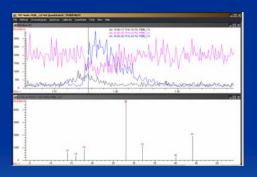
Acknowledgement

US DOE/EE Office of Industrial Technologies & Sandia National Laboratories

Results

Interior Temperature Profile

Mass Loss Profile (buoyancy not considered yet)


Composition Profile -Mass Spectrometry

Combustion gases were analyzed using molecular beam mass spectrometry

Composition profiles with respect to time of $O_2, \ CO_2, \ and \ H_2O$ are shown in the graph

An instantaneous spectra is shown also for these compounds in the lower graph

Conclusion

- Internal temperature at different furnace temperatures were obtained
- Transient mass loss data were obtained, but buoyancy needs to be considered
- Off-gas compositions were obtained, and more species need to be identified

