

Aerodynamic Properties of Popcorn Ash Particles

Derek Bassett, Nathan Lambson

10⁴

9.60

10.03

Background

- •Coal-fired power plant byproduct
- Formed from fly ash deposits on furnace wall

 Deposits break off and fall back down or flow downstream

 Particles interfere with heat exchangers and SCR surfaces

රි 101

10°

Particle Mass

0.2 0.14

mass, g

0,10 0,10 0,2

0.08

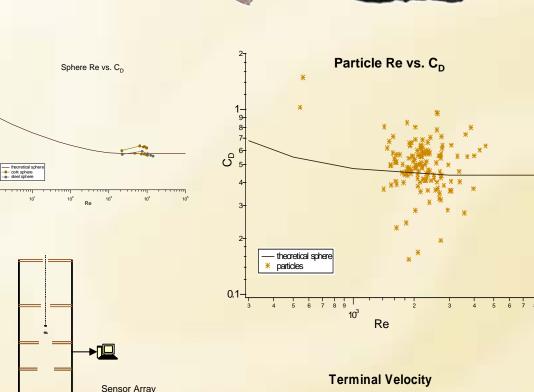
0.

0.06

or

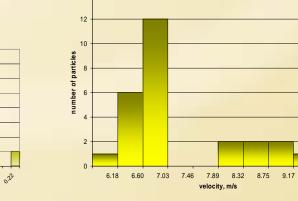
Purpose

 Determine drag coefficient C_D of particles for use in computational fluid dynamics


•Determine terminal velocity of particles


Method

 Used digital photographic analysis to determine projected surface area, outside surface area, and total volume


 Used array of photosensors to directly measure velocity in freefall

•Directly calculate C_D from data, and calculate terminal velocity for particles that did not reach terminal in freefall

14

Conclusions

 Particles in freefall quickly reach Re of 1500 to 4000, with C_D between 0.4 and 1.0

•Average C_D of 0.5 is in range of C_D for spheres at similar Re

•Terminal velocity is average of 7.2 m/s, with mode in the 6.6 m/s to 7.0 m/s range.

Future Work

•Determine C_D at lower Re, before entering Newton regime

•Find cause of discrepancy between experimental C_D and literature C_D

 Estimate or conduct experiments to determine change in $C_{\rm D}$ for lower density gas. (i.e. higher temperature gas in boiler)

Acknowledgements

Dr. Larry Baxter, Brigham Young University, Provo, UT

Dr. Larry Monroe. Southern Company Services, Inc. Birmingham, AL