Soot in Direct-Injection Diesel Fuel Jets

– Lift-off

Dennis L. Siebers and Lyle M. Pickett Sandia National Laboratories

Sponsors: DOE/OFCVT Program Manager: Gurpreet Singh

Direct luminosity images showing lift-off in a Cat 3171 with a HEUI injector.

(Mueller and Musculus, 2001)

Objectives of the soot investigation.

Measure soot distributions downstream of the lift-off length: - #2 diesel fuel, paraffinic fuels. - low-sooting (oxygenated) fuels.

- Parameters considered:
 - orifice diameter.
 - injection pressure.
 - ambient gas:
 - temperature.
 - density.
 - oxygen concentration (EGR).

 Impact of fuel-air premixing upstream of the lift-off length.

Research was conducted in an optically accessible combustion vessel.

Ambient gas conditions:

 15-21% O₂ (inert, EGR, air).
 800 - 1300 K.
 7 - 60 kg/m³.

Common-rail fuel injector:
 – 40 - 200 MPa.

 Single orifice tips: -45 - 180 μm.

15% O₂ corresponds to 40% EGR at a high-load condition.

The fuel injector: electronically controlled, common rail, 200 MPa pressure rating.

The soot measurements were made with two techniques: extinction and LII.

The lift-off length is determined from time-averaged images.

Lift-off on a diesel fuel jet can change significantly with changing conditions.

The lift-off length determines the amount of fuel-air mixing prior to combustion.

Entrained Lift-off \rightarrow \rightarrow \rightarrow Length

Percent of stoichiometric air entrained

$$\zeta_{st}(\%) = \frac{10}{3} \cdot \left(\sqrt{1 + 16 \cdot \left(\frac{x}{s^+}\right)^2} - 1 \right) = \frac{100}{\overline{\phi}}$$

$$s^+ = \frac{d}{\tan \alpha} \cdot \sqrt{\frac{\rho_f}{\rho_a}}$$

Fuel-air mixing is strongly affected by temperature, but not density.

<u>10</u>

Fuel-air mixing upstream of the lift-off length plays a role in the evolution of soot.

11

Typical axial soot distribution.

Peak soot levels increase with increasing ambient temperature.

<u>Conditions</u>: d = 100 μ m, ρ = 14.8 kg/m³, Δ P = 138 MPa

The peak soot-volume fraction varies linearly with ambient temperature

Soot within the fuel jet decreases with decreasing orifice diameter.

<u>Conditions</u>: $\Delta P_f = 138$ MPa, $\rho_a = 14.8$ kg/m³, $T_a = 1000$ K

Lll images support the soot extinction measurements.

<u>Conditions</u>: $\Delta P_f = 138$ MPa, $\rho_a = 14.8$ kg/m³, $T_a = 1000$ K

 Averages of 12 or more LII images.

 Optically thick conditions for larger orifice diameters.

Soot within the fuel jet decreases with increasing injection pressure.

<u>Conditions</u>: $d = 100 \,\mu\text{m}$, $\rho_a = 14.8 \,\text{kg/m^3}$, $T_a = 1000 \,\text{K}$

LII images support the soot extinction measurements.

• $d = 100 \,\mu\text{m}, \ \rho_a = 14.8 \,\text{kg/m^3}, \ \overline{T_a} = 1000 \,\text{K}$

17

Soot increases with increasing ambient density.

<u>Conditions</u>: d = 100 μ m, Δ P = 138 MPa

Implications for the overall structure of a fuel jet prior to wall impingement.

How does this picture change with conditions?

Implications for the overall structure of a fuel jet prior to wall impingement.

Summary and conclusions.

- Engine conditions (T and ρ) and injection parameters (*d* and ΔP_{ini}) affect lift-off:
 - changes in structure of a diesel fuel jet.
- Soot decreases with increasing ΔP_{inj} or with decreasing d, T, and ρ .
 - the peak soot varies linearly with ambient temperature.
 - the peak soot varies linearly with injection velocity.
 - no soot was formed with the 50 μ m orifice at a moderate-load engine condition ($\phi(H) = 2$).
- The amount of soot in a diesel fuel jet is strongly linked to the amount of fuel-air mixing upstream of the lift-off.