Application of Soot Model to a Pulverized Coal-Fired **Boiler :** *Pilot-scale Study*

Hong-Shig Shim, Adel Sarofim, Kevin Davis, and Michael Bockelie

Reaction Engineering International

Eric Eddings and David Wagner University of Utah

> 17th Annual ACERC Technical Conference Salt Lake City, Utah February 20 - 21, 2003

Outline

- Background
- Soot Model
- Experimental
- Pilot-scale Study
 - Model verification
 - Impact of burner and OFA operation
- Conclusions
- Future Options

REACTION ENGINEERING IN

Background

- Low NOx combustion can result in significant concentrations of submicron soot particles.
- Potential Impacts:
 - Increase in fine particulate emissions and opacity
 - Boiler heat imbalances due to enhanced lower furnace radiation
 - Potential decrease in effectiveness of air staging for NOx control
 - Ash salability
- Computational Fluid Dynamics

REACTION ENGINEERING INTERNATIONAL

http://svr1-pek.unep.net/soechina/acid/acidp1.htm

Veranth, J.M.; Fletcher, T.H.; Pershing, D.W. and Sarofim, A.F. <u>Fuel</u>, 79(9), 1067-1075 (2000).

GLACIER Overview

- Advanced CFD Code
- Over 100 combustion system modeled
- Over 8 years of industrial application
- Designed to handle "real-world" applications
 - Judicious use of submodels & numerics
 - Qualified modelers

Soot Model

Semiempirical model*

- Soot is assumed to form from only tar.
- Tar yields is calculated by CPD model⁺ based on measured coal characteristics.
- Three equations for conservation of the mass of soot and tar, and the number of soot particles.

* Brown, A.L.; Fletcher, T.H. Energy Fuels **1998**, 12, 745-757. † Fletcher, T.H.; Kerstein, A. R.; Pugmire, R. J.; Solum, M. S.; Grant, D. M. Energy Fuels **1992**, 6, 414-431.

REACTION ENGINEERING IN

Assumed Mechanism

Brown, A.L.; Fletcher, T.H. Energy Fuels 1998, 12, 745-757.

6

Conservation Equations

+ REACTION ENGINEERING INTERNATIONAL

$$\vec{\nabla} \cdot \left(\rho_g \vec{u} X\right) = \vec{\nabla} \cdot \left(\frac{\mu}{\sigma} \vec{\nabla} X\right) + \rho_g S$$

	X	S	
Mass of Soot	Y _C	$S_{Y_C} = \dot{r}_{FC} - \dot{r}_{OC}$	
Mass of Tar	Y_{T}	$S_{Y_T} = \dot{r}_{FT} - \dot{r}_{FC} - \dot{r}_{GT} - \dot{r}_{OT}$	
Number of Soot Particles	N _C	$S_{Nc} = \left(\frac{N_a}{M_C C_{\min}}\right) \dot{r}_{FC} - \dot{r}_{AN}$	

Brown, A.L.; Fletcher, T.H. Energy Fuels 1998, 12, 745-757.

Reaction Rates

* REACTION ENGINEERING INTERNATIONAL

Formation of Tar Oxidation of Tar

Gasification of Tar

Formation of Soot

Oxidation of Soot

Agglomeration of the particles per unit mass

$\dot{r}_{FT} = SP_{tar}$ $\dot{r}_{OT} = \rho_g [c_T] [c_{O2}] A_{OT} e^{-E_{OT}/RT}$ $\dot{r}_{OT} = [c_T] A_{GT} e^{-E_{GT}/RT}$ $\dot{r}_{FC} = [c_T] A_{FC} e^{-E_{FC}/RT}$ $\dot{r}_{OC} = SA_{v,C} \frac{P_{O2}}{T^{1/2}} A_{OC} e^{-E_{OC}/RT} \qquad SA_{v,C} = \rho_g (\pi N_C)^{\frac{1}{3}} \left(\frac{6Y_C}{\rho_C}\right)^{\frac{2}{3}}$ $\dot{r}_{AN} = 2C_a \left(\frac{6M_C}{\pi\rho_C}\right)^{\frac{1}{6}} \left(\frac{6kT}{\rho_C}\right)^{\frac{1}{2}} \left(\frac{\rho_g Y_C}{M_C}\right)^{\frac{1}{6}} (\rho_g N_C)^{\frac{11}{6}}$

Reaction Rate

Brown, A.L.; Fletcher, T.H. Energy Fuels 1998, 12, 745-757.

Arrhenius Constants

* REACTION ENGINEERING INTERNATIONAL

9

Term	Α	E (kJ/gmol)
Tar Oxidation	$6.77 imes 10^5$ (1/s)	52.3
Tar Gasification	9.77×10^{10} (1/s)	286.9
Soot Formation	5.02×10^8 (1/s)	198.9
Soot Oxidation	$1.09 \times 10^4 (\mathrm{K}^{1/2}/\mathrm{s})$	164.5

Brown, A.L.; Fletcher, T.H. Energy Fuels 1998, 12, 745-757.

Carbonization Rate

	A [sec⁻¹]	E
		[kJ/mol]
R. A. Dobbins et al. [1996]	1.78 x 10 ⁶	113
A. L. Brown et al. [1998] [*]	5.02 x 10 ⁸	198.9
B. S. Haynes et al. [1983]	1.3 x 10 ⁷	180

REACTION ENGINEERING INTERNATIONAL

* Reference can be found in 'Brown, A. L.;Fletcher, T.H. *Energy* & *Fuels* **1998**, 12, 745-757.' Haynes, B. S.;Wagner, H.G. *Z. Phys. Chem.* [N.S.] **1983**, 133, 201-213

17th Annual ACERC Meeting, Salt Lake City, Utah

Pilot-scale Test Furnace

long

12.5 m

The horizontal-fired combustor is 1.1 m x 1.1 m square and 12.5 meters

Capable of firing natural gas and/or pulverized coal at 5 MMBTU/hr

1.1 m

1.1 m

5 MMBtu/hr Low NOx Burner

Photoacoustic Analyzer

REACTION ENGINEERING INTERNATIONAL

Principle

 Detection of acoustic pressure wave resulting from surrounding air expansion by light absorbed aerosols

> <u>Advantages</u>

- Direct method to measure insitu light absorption by aerosol
- Elimination of possible sample contamination and/or loss when in-direct method is used

Sampling Set-up

- > Water-cooled, air-quenched transpiration sampling probe
- Four stage dilutions: At the transpiration probe tip (1) and three eductors (2, 3, and 4)
- Various dilution ratios, ranged from 400 to 3800 (at ambient temperature)

Soot Measurements

REACTION ENGINEERING INTERNATIONAL

Sampling probe at the 3rd section

PA with flow control and data acquisition system

17th Annual ACERC Meeting, Salt Lake City, Utah

Operating Conditions

REACTION ENGINEERING INTERNATIONAL

	Case 1	Case 2	Case 3	Case 4
Burner Stoichiometry	0.75	0.85	0.95	1.05
Overall Stoichiometry	1.15	1.15	1.15	1.15
Coal Feeding Rate [lb/hr]	320	323	323	325
Air Flow Rate [lb/hr]				
primary	448	449	450	449
secondary	607	693	796	900
tertiary	1,211	1,382	1,592	1,805
staging	1,197	896	597	383
Exit O ₂ , dry	3.0	3.0	3.0	3.0

Staging air port (OFA) was located at 4.5 meter from the burner inlet for all cases

Coal Properties

Proximate analysis

_	As Received		
Fixed Carbon	45.46		
Volatile Matter	39.42		
Moisture	4.68		
Ash	10.44		
Total	100.0		

Ultimate analysis

	As Received	
Carbon	69.65	
Hydrogen	4.42	
Nitrogen	1.25	
Sulfur	0.40	
Oxygen	9.16	
Moisture	4.68	
Ash	10.44	
Total	100.0	

REACTION ENGINEERING INTERNATIONAL

Coal Particle Size

<u>Size (µm)</u>	<u>Mass Fraction</u>	
16.5	0.017	
26.4	0.063	
40.4	0.283	
59.4	0.284	
86.8	0.233	
122.6	0.072	
169.6	0.043	
278.5	0.005	

Mass Average Diameter 68.0 μm

Soot Volume Fraction

Soot volume fraction along the centerline of the furnace for Case 1

- Under-prediction before OFA by a factor of 5
- Over-prediction after
 OFA by a factor of 40
- Swirl and recirculation flow pattern

Soot Volume Fraction

0.24 m

0.52 m

0.80 m

0.52 m

0.80 m

 ∇

0

0.24 m GLACIER

Soot volume fraction as a function of Distance from radial distance from the furnace floor the furnace side wall for Case 1

- Non-uniform
 - distribution of soot
- Recirculation and swirl pattern in the furnace

Impact of Burner Stoichiomety

5.0E-007 240 4.5E-007 Measurements 0 230 4.5E-007 0 GLACIER 4.0E-007 **6** 220 4.0E-007 acti Fraction 210 3.5E-007 0 3.5E-007 NOX, ppm 200 0 Ш 3.0E-007 3.0E-007 190 Soot Volume En 2.5E-007 2.5E-007 180 2 2.0E-007 170 2.0E-007 0 oot 160 1.5E-007 1.5E-007 ۸ 150 \cap S 1.0E-007 0 1.0E-007 140 0 5.0E-008 5.0E-008 0 130 0.0E+000 0.0E+000 0.9 0.8 1.0 1.1 150 200 250 100 **Burner Stoichiometric Ratio** Exit NOx, ppm Average soot volume fraction

- With decreasing burner stoichiometry > Soot volume fraction vs. NOx
 - Decrease in NOx
 - Increase in soot volume fraction

– Good agreement!

Impact of OFA Location

> Hypothesis:

- Different staging location can be significant in determining soot concentration in flue gas.
- Two cases (OFA 3 and 9)
 - Residence time from fuel injection to OFA port (2 vs 12 sec)
 - Temperature at downstream of the air staging port (1800 vs 1000 K)

	OFA3 & 9		Illinois #5
Burner Stoichiometric Ratio	0.85		As Received [%]
Overall Stoichiometric Ratio	1.15	С	65.99
Primary air flow rate [lb/hr]	473	Н	3.97
Secondary air flow rate [lb/hr]	700	0	8.47
Tertiary air flow rate [lb/hr]	1,392	Ν	1.29
Staging air flow rate [lb/hr]	929	S	3.49
Coal feeding rate [lb/hr]	345	Ash	9.87
		Moisture	6.92

Movies: Soot Volume Fraction

Soot Volume Fraction

OFA 3

OFA 9

- Complete burnout for OFA 3
- > OFA 9 results in high soot concentration in flue gas.
- Increased residence time can cause incomplete burnout resulting in high soot concentration in flue gas.

REACTION ENGINEERING INTERNATIONAL

Soot Burnout Propensity

* REACTION ENGINEERING INTERNATIONAL

Burnout level depends on soot particle size, available O₂, and temperature.

Conclusions

- Predictions showed a good agreement with the measurements.
- Predicted impact of burner operating conditions on soot concentration was in good agreement with the measurements.
- The impact of OFA location can be significant on soot formation/destruction.
- The level of detail provided by the simulations can be a valuable aid in understanding the mechanisms by which combustion modifications affect soot formation/destruction and NOx emissions.

Future Options

- Full-scale simulation (done! Will be presented at the 2003 Clearwater meeting)
- Develop a correlation between soot concentration and visible measurements
- Look at soot impacts on ash properties
- > Model improvements:
 - OH oxidation
 - Thermophoresis
 - Deposition
 - Nitrogen chemistry

Acknowledgements

- Funding has been provided by the Department of Energy
- Prof. Fletcher and Dr. Hill @ Brigham Young University
- Ryan Okerlund @ University of Utah
- Jim Valentine and Dave Wang @ REI

REACTION ENGINEERING INTE