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MotivationMotivation
EPA to control emissions of mercury from power 
plants beginning in 2004
– Approach and levels to be determined in 2003

No commercially available control technologies 
for mercury from coal-fired power plants
Existing control equipment for other pollutants 
(SO2, NOx, particulate) provides some level of 
mercury removal
Cost-effective control of mercury emissions 
requires an understanding of mercury 
behavior within air pollution control devices
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Forms of Mercury in Flue GasForms of Mercury in Flue Gas

Hg found in vapor-phase and bound to 
particulate matter; partitioning depends on 
– carbon content
– particulate control device (ESP vs. FF)
– NOx control (post-combustion) 
– coal type (bituminous vs. low rank)

Vapor-phase species:
– Elemental:  difficult to remove from gas
– Oxidized:  soluble in wet scrubbers, adsorbed 

more readily by some sorbents
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Mercury Removal in Mercury Removal in 
ScrubbersScrubbers
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Mercury Model OverviewMercury Model Overview
Objective:  Develop a model for mercury 
speciation in post-combustion flue gases.
Model inputs:
– Coal ultimate analysis, Hg, Cl
– Fired stoichiometric ratio (S.R.)
– Initial flue gas composition is computed assuming 

complete combustion.
– Time-Temperature profile of the flue gases to the 

air heater exit

Detailed chemical kinetics for gas-phase 
reactions
Global reaction rate for heterogeneous 
reaction with fly ash
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EqulibriumEqulibrium CalculationsCalculations

Compute Hg speciation versus 
temperature, composition.
Initial flue gas composition from 
Pittsburgh coal with 20% excess 
air. 
Curves shift to higher 
temperatures with increasing 
chlorine in coal.
– 200 K shift for HCl = 5-100 ppmw

in flue gas. 

HgCl concentration is negligible.
Transition temperature is around 
800 K.

Pittsburgh Hg Equilibrium, 320 ppmw HCl, 0.1 ppmw Hg 
in Coal, 20 ppmv HCl Initial Flue Gas  
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Homogeneous Hg ReactionsHomogeneous Hg Reactions
General 2-Step Mechanism for Hg oxidation to HgCl2

RTE
o

aeTkk /−⋅⋅= β

Hg HgCl HgCl2
(Cl species) (Cl species)

Reaction ko β Ea
(moles, cm3, s) --- (cal/mol)

Hg + Cl + M = HgCl + M 9.00E+15 0.5 0
Hg + Cl2 = HgCl + Cl 1.39E+14 0 34000
Hg + HCl = HgCl + H 4.94E+14 0 79300

Hg + HOCl = HgCl + OH 4.27E+13 0 19000
HgCl + Cl2 = HgCl2 + Cl 1.39E+14 0 1000

HgCl + Cl + M = HgCl2 + M 1.16E+15 0.5 0
HgCl + HCl = HgCl2 + H 4.64E+03 2.5 19100

HgCl + HOCl = HgCl2 + OH 4.27E+13 0 1000
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Heterogeneous KineticsHeterogeneous Kinetics

Hg vapor reacts heterogeneously with 
fly ash.
Two treatments.
1. Detailed Langmuir-Hinshelwood type 

model developed for HgCl formation.
2. Simplified global model. 

A global model is used due to lack of 
adequate data for the detailed scheme.
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LangmuirLangmuir--HinshelwoodHinshelwood ModelModel
HgCl formation by surface reaction of adsorbed Hg, Cl.

Let θi be the number of surface sites occupied by species i, where 
θ = sum (θi).

iidiai kik θθ ⋅=⋅−⋅ ,][)1(

Balance the rate of adsorption and desorption of i: 

Solve for θ, and θi, where Ki = ka,i/kd,i:
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Global ModelGlobal Model
Stoichiometric reaction: 

This reaction is based on the sum of the following two reactions
under fuel lean conditions.

Rate of HgCl2 formation:

kf and kr are related by gas-phase equilibrium.

Hg (g) + 2HCl (g) + 1/2 O2 (g) == HgCl2 (g) + H2O (g)   

Hg (g) + 2HCl (g) == HgCl2 (g) + H2 (g)   
H2 (g) + 1/2 O2 (g) == H2O (g)
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Global Model Cont.Global Model Cont.
kf is tuned to experimental data assuming Ea = -19 kJ/mol, and 
adjusting kfo, with an average coal ash content of 8.3% 
assumed.

The following relation for Kp is computed: 

Homogeneous rates for species HgCl2, Hg, HCl, O2, and H2O, 
are augmented by the heterogeneous  rate for HgCl2, and the 
stoichimetric relationship between species.
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Model EvaluationModel Evaluation
Test chlorine kinetics
Evaluate the homogeneous model and 
tune the heterogeneous model
Compare Hg oxidation versus coal Cl
content to experimental data
Use a Pittsburgh bituminous coal as a 
basis for calculation. Vary Cl in coal
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Effect of Quench Rate on Effect of Quench Rate on 
ChlorineChlorine
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Validation: Lab DataValidation: Lab Data

Five different laboratory studies
Flow tubes and flames
Trends reproduced
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Boiler Modeling InputsBoiler Modeling Inputs

Combustion S.R. = 1.23

Pittsburgh Coal

Coal Ultimate Analysis
(As Received)
Carbon   76.72%
Hydrogen 4.80%
Oxygen  6.91%
Nitrogen 1.48%
Sulfur   1.64%
Ash 7.01%
Moisture  1.44%

Coal Chlorine (ppmw) 2235
Coal Mercury (ppmw) 0.1

Air Composition
Nitrogen 77.33%
Oxygen 20.75%
Argon 0.93%
Moisture 1.00%

Flue Gas Composition (by volume)

CO2 14.04%
H2O 6.38%
O2 3.75%
N2 74.83%
SO2 0.11%
Ar 0.89%
HCl (ppmv) 12.4
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Typical Boiler Temperature Typical Boiler Temperature 
Profile UsedProfile Used

Final temperature corresponds to the air preheater exit
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Homogeneous ResultsHomogeneous Results

The homogeneous model 
tends to underpredict the 
degree of mercury 
oxidation and overpredicts
the amount of elemental 
mercury.

Data points are experimental values for boilers firing a range of coal ranks.  

Data are at the inlet to the cold-side particle collection device. 
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Heterogeneous ResultsHeterogeneous Results
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Concentration ProfilesConcentration Profiles
Pittsburgh Coal with 200 ppmw chlorine

Chemistry takes off at around 800 K, as predicted by equilibrium
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Pittsburgh Coal, 200 ppmw Cl in Coal
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Effect of Coal RankEffect of Coal Rank
ICR data show no clear 
trend due solely to coal 
rank.
Initial Hg concentration 
has a minimal effect.
While the PRB has more 
ash, the HCl conc. is higher 
for the same ppmw Cl in 
coal, than the Pittsburgh, 
resulting in higher 
conversion for the PRB.
Model does not account for 
ash composition: LOI, Ca 
(low rank)

Sub-bituminous: Jacob's Ranch PRB, 5% ash, 30% moisture, 3 ppmw Cl, 0.1 ppmw Hg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000
Cl in Coal (ppmw, dry)

H
g 

as
 H

g(
0)

 %

Pittsburgh
Sub-Bituminous
ICR Bituminous
ICR Low Rank



22

77 West 200 South, Suite 210, Salt Lake City, Utah 84101, TEL (801) 364-6925                            REACTION ENGINEERING INTERNATIONAL

ConclusionsConclusions
The scatter in the experimental data points is significant, 
and could be due to 
– Ash composition, carbon in ash variations
– Time-temperature profile variations
– Measurement uncertainty: Cl and Hg in coal
– Experimental uncertainty: Ontario Hydro measurement errors

The global heterogeneous model agrees with experimental 
data, and with equilibrium predictions.
The Langmuir-Hinshelwood model could be used if 
adsorption data were known.
Scatter in experimental Hg oxidation versus coal Cl data 
cannot be explained on the basis of coal rank.    
NO and SO2 interaction with Hg are not accounted for in the 
gas phase, and not explicitly accounted for in the 
heterogeneous model. 


