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Motivation

» EPA to control emissions of mercury from power
plants beginning in 2004

— Approach and levels to be determined in 2003

» No commercially available control technologies
for mercury from coal-fired power plants

» Existing control equipment for other pollutants
(SO,, NO,, particulate) provides some level of
mercury removal

» Cost-effective control of mercury emissions
requires an understanding of mercury
behavior within air pollution control devices




Forms of Mercury in Flue Gas

» Hg found in vapor-phase and bound to
particulate matter; partitioning depends on

— carbon content
— particulate control device (ESP vs. FF)
- NO, control (post-combustion)
— coal type (bituminous vs. low rank)
» Vapor-phase species:
- Elemental: difficult to remove from gas

— Oxidized: soluble in wet scrubbers, adsorbed
more readily by some sorbents
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> Objective: Develop a model for mercury
speciation in post-combustion flue gases.

» Model inputs:
— Coal ultimate analysis, Hg, CI
— Fired stoichiometric ratio (S.R.)

— Initial flue gas composition is computed assuming
complete combustion.

- Time-Temperature profile of the flue gases to the
air heater exit

» Detailed chemical kinetics for gas-phase
reactions

» Global reaction rate for heterogeneous
reaction with fly ash
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Compute Hg speciation versus
temperature, composition.

Initial flue gas composition from
Pittsburgh coal with 20% excess
air.
Curves shift to higher
temperatures with increasing
chlorine in coal.

- 200 K shift for HCl = 5-100 ppmw

in flue gas.

HgCl concentration is negligible.

Transition temperature is around
800 K.
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» General 2-Step Mechanism for Hg oxidation to HgCl,

(ClI species)

(ClI species)

Hg > HgCl > HgCl,
Reaction Ko B E.
(moles, cm?, s) — (cal/mol)
Hg + CI + M = HgCl + M 9.00E+15 0.5 0
Hg + Cl, = HgCl + CI 1.39E+14 0 34000
Hg + HCI = HgCI + H 4.94E+14 0 79300
Hg + HOCI = HgCl + OH 4.27E+13 0 19000
HgCl + Cl, = HgCl, + Cl 1.39E+14 0 1000
HgCl + Cl + M = HgCl, + M 1.16E+15 0.5 0
HgCl + HCI = HgCl, + H 4.64E+03 2.5 19100
HgCl + HOCI = HgCl, + OH 4.27E+13 0 1000

k=k, T/ e 5/




Heterogeneous Kinetics

» Hg vapor reacts heterogeneously with
fly ash.

» Two treatments.

1. Detailed Langmuir-Hinshelwood type
model developed for HgCl formation.

2. Simplified global model.

» A global model is used due to lack of
adequate data for the detailed scheme.




Langmuir-Hinshelwood Model

» HgCl formation by surface reaction of adsorbed Hg, ClI.

> Let 6,be the number of surface sites occupied by species i, where
0 = sum (0,).

> Balance the rate of adsorption and desorption of i:

k- (1=6,)-[i]= Ky, 0,

1

> Solve for 0, and 6, where K; = k, /Ky ;:

0= ZKI[Z]

1+ K, -[i]

v o K-l
gi_Ki (1 9) [l] 1+Z(Kl[l])

» Compute rate of HgCl formation:

d[HgClI] k,-[Hgl[CI]- K, - K,

:k .gHg 'HCI =

a (1+> K, 1)
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> Stoichiometric reaction:

Hg (g) + 2HCI (g) + 1/2 O, (g) == HgCl, (g) + H,0 (9)

> This reaction is based on the sum of the following two reactions
under fuel lean conditions.

Hg (g) + 2HCI (g) == HgCl,(g) + H, (9)
H, (g) + 1/2 O, (g) == H,O (9)

> Rate of HgClI, formation:

d[HgCl ]

=k, [HEIHC~k [HgCL][H,0]

" [HCN[0,]"

> k; and k, are related by gas-phase equilibrium.

_K = [HgCL][H,0] —K -(R-T)™"

©lHglHCI[0]" Y
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> k;is tuned to experimental data assuming E, = -19 kJ/mol, and
adjusting k;,, with an average coal ash content of 8.3%
assumed.

.%Ash_in_coal.eX (—E ]
P R-T

k. = a
L 8.3

» The following relation for K, is computed:

log, K, = % —8.7235

» Homogeneous rates for species HgCl,, Hg, HCI, O,, and H,0O,
are augmented by the heterogeneous rate for HgCl,, and the
stoichimetric relationship between species.




Model Evaluation

» Test chlorine kinetics

» Evaluate the homogeneous model and
tune the heterogeneous model

»Compare Hg oxidation versus coal Cl
content to experimental data

»Use a Pittsburgh bituminous coal as a
basis for calculation. Vary Cl in coal
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Conclusion:

*Quench rate affects
production of Cl and
Cl,

*Cl is critical for Hg
oxidation
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> Five different laboratory studies
> Flow tubes and flames
» Trends reproduced




Boiler Modeling Inputs

Pittsburgh Coal

Coal Ultimate Analysis
(As Received)

Air Composition

Nitrogen 77.33%
Oxygen 20.75%
Argon 0.93%
Moisture 1.00%

Flue Gas Composition (by volume)

Carbon 76.72%
Hydrogen 4.80%
Oxygen 6.91%
Nitrogen 1.48%
Sulfur 1.64%
Ash 7.01%
Moisture 1.44%
Coal Chlorine (ppmw) 2235
Coal Mercury (ppmw) 0.1

Combustion S.R. = 1.23

CO, 14.04%
H,O 6.38%
0, 3.75%
N, 74.83%
SO, 0.11%
Ar 0.89%
HCI (ppmv) 12.4
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The homogeneous model
tends to underpredict the
degree of mercury
oxidation and overpredicts
the amount of elemental
mercury.

% Hg as Hg(0)

Data points are experimental values for boilers firing a range of coal ranks.
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Pittsburgh Coal, 200 ppmw Cl in Coal
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Mercury oxidation reactions begin around 800 K.
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> ICR data show no clear
trend due solely to coal
rank.

» Initial Hg concentration
has a minimal effect.

» While the PRB has more
ash, the HCI conc. is higher
for the same ppmw Cl in
coal, than the Pittsburgh,
resulting in higher
conversion for the PRB.

» Model does not account for
ash composition: LOI, Ca
(low rank)
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» The scatter in the experimental data points is significant,
and could be due to

— Ash composition, carbon in ash variations

- Time-temperature profile variations

— Measurement uncertainty: Cl and Hg in coal

- Experimental uncertainty: Ontario Hydro measurement errors

» The global heterogeneous model agrees with experimental
data, and with equilibrium predictions.

» The Langmuir-Hinshelwood model could be used if
adsorption data were known.

» Scatter in experimental Hg oxidation versus coal Cl data
cannot be explained on the basis of coal rank.

» NO and SO, interaction with Hg are not accounted for in the
gas phase, and not explicitly accounted for in the
heterogeneous model.




