

Prediction of Tar and Light Gas During Pyrolysis of Black Liquor and Biomass

Harland R. Pond

Thomas H. Fletcher

Larry L. Baxter

Chemical Engineering Department
Brigham Young University

Model Background

- Creation of model characterizing pyrolysis of biomass fuels
- Model combines individual components
- Inclusion of model in FLUENT and PCGC
 - 3 combustionpackages

Chemical Percolation Devolatilization (CPD) Model Approach

- CPD looks at a lattice of coal rings
- Focuses on bridges between rings and their length, energy and statistical breaking
- Includes ring structure, bond energy and vapor pressure
- Function of coal type, heating rate, temperature and pressure

CPD Lattice

- Structural Parameters required
 - Number of attachments
 per cluster (s + 1)
 - Fraction that are stable bridges (p_o)
 - Molecular weight per cluster (M_{CL})
 - MW per side chain (M_d)

Representative Coal Molecule

CPD Parameters

- Structural parameters
 - $\overline{-M_{d}, p_{o}, M_{CL}}$ s + 1, elemental analysis
 - Fraction of char links (c_o)
- Kinetic Parameters
 - Kinetics for two competing reactions

Model Goals

- Each biomass fuel consists of cellulose, lignin and hemi-cellulose (hard- and softwood)
- Black liquor consists of Kraft lignin and residual carboxylic acids
- Develop kinetic and structural parameters for each component
- Use mass weighted distribution of CPD predictions for individual components

CPD Application to Biomass

- Linear structure of cellulose is modeled with c_o and p_o
- Bridge weights for cellulose type components changed to model ether linkages

Figure 13. Structure of cellulose. Stereochemical (a), abbreviated (b), Haworth perspective (c), and Mills' (d) formulas.

Lignin Chemical Model

- Lignin is similar to low rank coal with lattice structure
- Coniferyl, sinapyl and p-coumaryl acids base cluster in the CPD model

Setting Parameters

- Structural parameters (p_o, M_{CL}, M_d) and s+1) set with ¹³CNMR and theory research
- Kinetic parameters taken from previous research (Sricharoenchaikul, Fletcher, Serio, Azevedo)
- 3 parameters need to be fitted to volatile yield data (c_o, E_c, \mathbf{r})

13CNMR Analysis on Black Liquor

- Structural parameters for black liquor composite obtained from ¹³CNMR analysis
- Parent samples sent to Pugmire and Solum at the University of Utah for analysis
- Reacted samples from flat flame burner experiments were sent for analysis (Webster, BYU 2002)

Black Liquor

C-13 CPMAS & DD

Lignin Precursors and Oxidation Products

Structural Parameters

- Parameters obtained from theory for hardwood and softwood lignin and Kraft lignin
- CNMR parameters used for composite Black Liquor parameters

Parameter Parame	Lignin	Lignin	Kraft Lignin	Black Liquor
Structural Parameters	Hardwood	Softwood		Composite
MW ₁	207.5	186	195	296.5
M_d	39	34	21.5	206.43
p _o	0.710	0.710	0.710	0.330
_σ +1	3.50	3.50	3.50	3.60

Pyrolysis Data

- Volatile yield data required for fitting the model
- Need data with heating rates and yields at different temperatures
- Data obtained
 - Lignin: Nunn, et. al. heated grid data
 - Black Liquor: BYUFurnace data

CPD Model in Previous Research

- Kinetic parameters for biomass and black liquor identified from original and previous research (Serio)
- Some structural parameters in previous applications of the CPD model not set correctly misunderstood
 - Sheng & Azevedo (2000)
 - Sricharoenchaikul (2002)
- Sricharoenchaikul fit model only to tar yields
 - Measured tar yields were too low (not all tar accounted and carbon balance not closed)

Optimization and Data Fitting

- Optimization required for three parameters (E_c, r, c_o)
- CPD model used with optimization program to find global optimized parameter values
 - Values of $E_c = 0$ gave best model results
 - Value of r set to 3.9
- Model fit to data through fine tuning kinetic parameters and c_o

CPD Component Parameters

Parameter	Lignin	Lignin	Kraft Lignin
Structural Parameters	Hardwood	Softwood	
MW ₁	207.5	186	195
M_d	39	34	21.5
Kinetic Parameters			
E _b , kcal/mol	54.00	54.00	5.56E+04
A _b , s ⁻¹	2.60E+15	2.60E+15	2.60E+15
s _b , kcal/mol	3.972	3.972	3.972
E _g , kcal/mol	66.00	66.00	6.60E+04
A _g , s-1	3.00E+15	3.00E+15	3.00E+15
s _g , kcal/mol	4.776	4.776	4.776
r	3.9	3.9	3.9
E _c , kcal/mol	0	0	0
E _{cross} , kcal/mol	55.68	55.68	55.68
A _{cross} , s ⁻¹	3.00E+15	3.00E+15	3.00E+15
c _o	0.10	0.10	0.28
p _o	0.710	0.710	0.330
s + 1	3.50	3.50	3.60
fst	0.60	0.60	0.60

Results

Preliminary Cellulose

 Initial cellulose study using modified Sheng parameters with heated grid data

Lignin

Secondary tar reactions to form light gas

 Yields fit heated grid data well, secondary tar reactions not modeled

Black Liquor

 $Na_2\overline{CO_3} + 2\overline{C} \rightarrow 2Na + 3CO$

 $Na_2CO_3 + C \rightarrow 2Na + CO + CO_2$

 Yields fit well with furnace data, sodium – carbon reactions not modeled

Future Work

- More volatile data needed for black liquor, cellulose and hemi-cellulose
- Integration of a program calculating component composition from elemental analysis
- Predict volatile yield from weighted average of biomass components

Summary & Conclusion

- CPD modified slightly to describe biomass
- Previous attempts to use CPD model were incomplete
- Developed chemical structural and kinetic parameters for Kraft lignin and lignin based on theory, literature review and curve-fitting

Summary & Conclusion cont'd

- Three cases described accurately
 - Preliminary Cellulose study (heated grid)
 - Lignin (heated grid)
 - Black liquor (furnace)
- More data needed to see if parameters have general applicability
- More study needed for cellulose, hemi-cellulose and carboxylic acid parameters
- Need better understanding and model of secondary reactions